
RANDOM SELECTION

In the last part of our look at file handling
we discussed sequential files. Now we look
at an alternative but complementary
technique — random access files. Although
this type of file offers very direct and
therefore faster access to data, it uses more
storage space and must be carefully and
uniformly defined.

-
The limitations of sequential files arise because of
the necessity to read the information stored in
them in order. Random or direct access files
provide a solution to these limitations because the
records within them can be accessed in any order
and very quickly. The word 'random' does not
imply that the file is constructed or used in a
chaotic manner, it simply means that any segment
may be written to or read from without the need to
go through all the preceding information.

The obvious problem here is that all files held on
cassette tape must be sequential files. There is no
way to go straight to an item of data in the middle
of a cassette tape; instead the whole tape must be
read through. The only way to use random access
files on a micro that relies on tape storage is to load
all the data into memory, but this limits the file size.
Disk drives are needed for useful random access;
but even so, a few makes of disk drive cannot
support this type of file handling.

The user will also find that random access files

Random Vs Sequential Files
RANDOM ACCESS

FILLS

SEQUENTIAL FILES

PROS • Fast access to
particular records

• Conserve space

• Available on tape
systems

CONS • Waste space

• Need disks

• Slow and
cumbersome

SUITABLE

APPUCATIONS

• Predictable data
that is in a defined
format

• When small
numbers of different
records are
accessed; for
example, in a library
where customers
ask for details of
particular books.
This is a low 'hit
rate application

• Large quantities
of unstructured data

• When most of the
records in a tile are
processed in a
single run of the
program; for
example, in a salary
system, where every
employee must be
paid. This is known
as a high 'hit rate'

244 THE HOME COMPUTER ADVANCED COURSE

are easier to work with than the rather
cumbersome techniques needed for sequential
files. The division of the file into records and fields
that we detailed on page 226 is very important
with random access files. To access the file, the
required record must be specified. This record,
together with its fields, will then be put into a
buffer in the computer's memory, where the fields
may be deleted, amended or printed.

Fortunately, the operating system will take care
of the more complicated structures necessary. It
will need to go quickly to the start of a particular
record on a disk. It cannot do this on a sequential
file, as the only way to locate a record is to read
through all the data, counting off each field
marker. In order to facilitate rapid location, every
record in a random file is the same length. If each
record were 100 bytes or characters long, and the
program asked for record number 83, the
operating system would position the disk head at
the start of the 8300th byte of the file. It has a
record of how many bytes are in each sector of the
disk and can therefore calculate the location of the
required record.

This method of file reading may seem
complicated, and it is certainly slow, but it is far
quicker than reading through a sequential file.

When standardising the length of the files, it is
obviously necessary to choose a size that will
accommodate the longest record stored in the file.
Shorter records must be padded out, usually with
spaces (32 in ASCII code). This is a major
drawback to random files, as the padding required
to make the records up to length is a waste of
precious storage space. This means that random
files are used for small amounts of information
where access needs to be quick, while sequential
files are used for bulk storage where access speed is
unimportant.

Fields within a record must also be set to a
standard length. This is particularly relevant to
systems that provide a random access facility to
specific fields as well as to particular records. For
systems without this facility, it is still a neater and
more efficient way of file definition. The first step
when designing a random access file is to list the
different fields and decide on suitable lengths for
them. A field for a person's name should be at least
20 characters long, for example, whereas you
would need only two characters in which to store
their age.

Economy is crucial when designing a file, as
there will inevitably be a trade-off between the
amount of information stored and the number of
different records. Quite often, coding systems can
be devised to reduce the amount of space taken up


