

----. ,......

, .::. Plotting,
Subhunter

START

Set up screen This is the layout for the

Initialise scores Commodore subhunter game

. . f shown as a flow diagram. We
have so far initialised the
program and set the timer to

Read in sprite data 0.:: zero. The next step will be to

Initialise sprites ' enter the main program loop
..... ,	itself, which will cause the

ship and submarine to move
while constantly updating the

Select submarine .., score and the tinier
speed and depth

Set timer to zero

—
Update timer

, ...•.. . ,.._ _..... • -.

- - -- - - - i -	• -

Is
ti mer

>2.59
?

Turn off sprites
Reset ship position - - ------,

Accept keyboard
input

'

' Select submarine
speed and depth

Move ship and , . --
submarine

Is
- /sub at

edge of
screen

,

„
Another

r•,,,

game
? ilk'

Update hi score

intr...........„„„„,
Update score Reset score M

/1411r
Select submarine Reset timer , ,',,,,..

speed and depth 4,,,,
Turn on ship and

submarine

a depth

•
..

as iSTOP

charge been
f ired

7
.

i

Move depth charge

Is
there a

collision
?

Update score A/
Select submarine
speed and depth a.

0

4 4

234 THE HOME COMPUTER ADVANCED COURSE

Subhunter Program
The Commodore 64 has its own internal clock that can
be used to ti me BASIC programs. The clock has six
digits, rather like a digital watch, representing hours
(00-23), minutes (00-59), and seconds (00-59). The
clock can be accessed from BASIC through the string
variable 11$. The value of 11$ gives the time that has
elapsed since the computer was turned on, but it can
also be reset at anytime. The following short program
demonstrates how the timer works.

10 REM , JIMER.„
20 PRINT CHR$ (147) : REM GLEAR SCREEN
30 TIS = "000000' : REM SET TIMER TO

ZERO
40 PRINTCHR$(145);T1S : REM PRINT CURRENT

VALUE OF TIMER
50 : REM CHR$(145)=

CURSOR UP
GOT040

The program runs in a continuous loop, printing the
ti mer to the screen until you press the Run/Stop key.

The Subhunter game we are writing requires a
clock to be displayed on the screen and to end the
game when three minutes have elapsed. The game
clock, therefore, requires only the minutes and
seconds parts of TIS. By using the string functions we
can break 11$ down as follows:

RIGHTS (TIS,2)

HH (
MM) (SS)

M1D$ (T1$,3,2)

The two seconds digits can be stripped off by
R1GHT$ (Tl$,2), and the minutes digits can be
isolated by MIDS(Tl$,3,2).

The main program loop of our game starts at li ne
200 and ends at 390. Load up the subroutine already
typed in from the last section and add these lines:

140 T1$="000000"
150
160
200 REM MAIN LOOP
205
210 REM *„ TIMER
220 PRINTCHR5(19);:TAB(14)CHR$(5)"TIME

"; MID$(11$,3,2);":";RIGHTS(T1$,2)
225 IFVAL(TIS)>259THEN400:REM END GAME

390 GOT0200:REM RESTART MAIN LOOP
400 END

Line 140 re-sets the clock at the start of the program.
Line 220 PRINTs the current value of the clock in
minutes and seconds, separated by a colon. TAB(14)
causes 14 spaces to be left before PRINTing and
positions the clock in the middle of the screen.
CHRS(5) will colour the characters white. Line 225
converts T1$ to a numeric quantity so that its value
can be tested. If playing time has exceeded two
minutes and 59 seconds, then the game is at an end.

