
0 Passwords To Computing

Properly Addressed
The CPU has to locate instructions and data stored in thousands of
bytes of computer memory. We reveal what goes on inside the CPU
when program instructions are executed

Chains Of Events
Many stages are involved in
ever the simplest CPU
operation. Instructions, also
called 'op-codes', are read
into the CPU from memory.
These instructiois are
decoded by the control block
and cause specific operations
to occur. In this example,
instruction 58 is read in from
memory Iccation 1053. This
particular nstruction causes
the f7llowing chain of events
to occur: the byte in the next
memory Iccatior (1054) will
be read in and stored in one
half of the CPU's 16-bit
address register. The byte in
the next lo;ation (1055) will
be read in and stored in the
other half. These two bytes
now represent the address
(elsewhere in memoryi where
some data is stored. The
contents o` the aidress
register are now Dut on the
address bus so that the next
memory location accessed
will be add'ess 3071. The
contents o this address are
put onto the data bus and
read into tre CPL. This byte
(96 in our example) is then
placed in the CPU's
accumulator, where it will
stay until operated on ty a
further instruction. The
address bus will :hen revert
back to its previous address+
1, so that it will now be
addressing location 1056. The
CPU knows that whatever is
contained in that locati n
must be an instruction and a
similar segi once of
operationswill be repeated. In
this example, the next
instruction is 84, which is
interpreted by the control
block to'ccmplement' or
inver the bits in he
accumulator. Since 84 is a
'one byte' instruction, the
CPU Knows that tie byte in
the next memory location,
1057, will also bean
instruction

The CPU receives its instructions and data from
locations in the computer's memory by setting its
address pins to the required binary code for the
memory location and then reading the contents of
the location into the CPU via the data bus. In
actual operation, however, the operation is rather
more complicated.

The problem is that the bytes (eight-bit binary
codes) in any of the thousands of memory cells in
the computer's memory might be instructions,
telling the CPU to do something, or data, which
the CPU must manipulate in some way. How does
the CPU know which bytes are instructions and
which are data?

Recognising Codes
First, let's consider what an `instruction' is. It is a
code, in binary, which causes a specific sequence
of operations to be performed within the CPU.
Thus the code 00111010, if recognised by the CPU
as an instruction rather than as just a piece of data,
might make the CPU address the next two bytes in

memory, read in the data from them, put that data
in a special `address register', set the address pins to
the same number, go to the newly, addressed
memory location, get the contents of that location
on the data bus and load those contents into the
CPU's accumulator.

This can sound confusing when expressed in
words, but what we have just described is one of
the methods of memory addressing used in the
popular Z80 CPU. The entire process of getting a
byte of data from memory into the CPU is shown
in the illustration. Suppose the CPU already
knows that the next byte accessed from memory
will be an instruction (not data) and that this byte
resides in memory location 1053. (All the
numbers used in this illustration are in decimal
notation.) This address, 1053, will be put on the
address bus. In binary, this is 0000010000011101.
The 16 address pins are switched `on' or `off' to
correspond to this number. When the `address
decoder' receives this address over the address
bus, it `decodes' it and switches on one, and only
one, of its output lines. This is the line that selects

144 THE HOME COMPUTER COURSE


