
number of help pages, so again a general help
routine is desirable. This may require the user to
input a number to identify the particular help page
required. On disk-based systems, the help pages
may be held on disk as separate files. The help
routine will then create the appropriate file name
from the user's input, read in the file and display it
on the screen.

Both help and instructions routines may well
take up more than just a single page of
information. If this is the case, your display routine
should be designed in such a way that the user is
able to move backwards and forwards through the
pages at will. You should also ensure that the user
can leave the routine at any stage and return to the
exact point at which the main prop-am was left — it

program such commands onto function keys and
display a single-line message to show each key's
function. It is always good practice to display a

Good Management
The ACT Apricot's Manager software guides the user
through a suite of unfriendly utility programs by its
hierarchical menu system. Help is an option on
every menu, and consists of an explanation of the
other menu items. This is a good example of classic
menu-driven software supported by large Help files

is very frustrating to go through 10 pages of
redundant information each time the instructions
are required! If a prompt had been given, it will
now have been lost so it must be repeated. The
help routine should set a flag that tells the calling
routine that it must go back to the last instruction
before the help call, first clearing the flag.

A common metaphor for user interactions with
complex programs is to think of the user
navigating through a tangled network of logic. The
newcomer to the program will not understand its
structure and can easily become disoriented and
lost. Thus 'signposts' are needed to guide the user.
A menu is the clearest example; this operates like a
road sign that shows the possible exits from a
junction. Systems such as Apple's Macintosh and
Lisa work in a similar way, using icons instead of
menu options.

Some directions are more important than
others. In a command-based system, there may be
dozens of possible commands. However, not all of
these will be relevant or even possible at a given
point in the program. If the number of options is
small, it is useful to display a line or two to explain
what they are. Some options — such as QUIT —
must be available at all times, so it is a good idea to
keep these on permanent display. UNDO, SAVE and
other application-specific commands may also be
constantly available. A common technique is to

signpost that indicates the way out of a program —
this instils confidence in first-time users, whose
major concern is often to find the emergency exit!

Some experimental systems have been
developed that can monitor a user's performance
and adjust the level of help given accordingly.
Commercial programs with this feature are still a
long way off, but it is possible to use simple
techniques to achieve at least a part of this goal. If
the user is asked to give his or her name each time
the program is run, then a file can be kept of users
and their skill levels. These levels can be calculated
(from the number of times a particular user has
run the program, say, or from the highest score
achieved if the program in question is a game) and
updated at the end of the program run. As the skill
level increases, the type of help and signposting
supplied will change, becoming briefer and less
intrusive. The user might also be asked to choose
the level of help required, as in the Wordstar word
processing package. Ideally, both alternatives
would be used.

Incorporating help can be a valuable guide to
improving a program's performance. Once a help
routine has been designed (such as the one
provided here) it is a simple matter to modify it to
record which help pages were used and how often
they were needed. This gives a clear indication of
the trouble-spots in the program.

THE HOME COMPUTER ADVANCED COURSE 527


