
numbers. We have seen examples of both uses
already. Consider this program, for example:

6502 Z80

DATA1 EQU $12 DATA1 EOU $12

DATA2 EQU $79 DATA2 EOU $79

LDA DATA1 LD
ADC

JR

A(DATA1)

A,(DATA2)
NZ,LOOP

LOOP ADC DATA2

BNE LOOP
RTS RET

Here we have two kinds of symbol, two values and
a label, all used as the operands of the Assembly
language instructions. Because of this, the
program fragment is both general and able to be
relocated. The only absolute quantities are the
values of DATA1 and DATA2, and they can be
initialised in the surrounding program, rather than
at the start of the routine itself.

There are other pseudo-ops that we have not
yet discussed. In particular, DB, DW and DS
(though, like OR G and EQU, they may differ from
one assembler program to another). These three
directives, which stand for 'Define Byte', 'Define
Word', and 'Define Storage', enable us to initialise
and allocate memory locations, as in this example:

ORG %IMO

D3A0 5F LABL1 DB $5F
D3A1 CE98 LABL2 DW $98CE

0383 -LABL3 DS $10

D3B3 DATA1 EQU LABL3

SYMBOL TABLE:
LABL1 = D3A0: LABL2 = D3A1: LABL3 = D3A3

DATA1 = 03A3

ASSEMBLY COMPLETE — NO ERRORS

In this full Assembly listing (the output of an
assembler program) we see at the bottom for the
first time a symbol table, consisting of the symbols
defined in the program and the values they
represent. There are several important things to
notice in this fragment. First of all, in the line that
begins LABL1, the DB pseudo-op is used. We can
see from the listing that the 0 R G directive has given
the address $D3A0 to LABL1, and the symbol table
confirms this. The effect of DB here is to place the
value $5F in the byte addressed by LABL1 — so
memory location $D3A0 is initialised with the value
$5F, as we can see in the machine code column of
the listing.

Secondly, LABL2 represents the address $ D3A1 .
However, DW has the effect of initialising a 'word'
(two consecutive bytes) of storage, so the value
$98CE is stored in locations $ D3A1 and $ D3A2 in lo-
hi form — this can be seen clearly in the machine

GENERAL ROUTINE

Making machine code programs
relocatable, so that their execution is
independent of their locations, requires the
use of symbols and labels rather than
absolute addresses and values. We study
some more assembler directives and their
role in program structure, and take a first
look at Assembly language subroutine calls.

-
Because Assembly language is essentially a simple
programming language composed of the
'primitive' commands that the CPU can manage,
you will find yourself constantly writing and re-
writing fragments of program to do the same
essential tasks that you take for granted as part of
the instruction set of a high-level language —
input/output handling, for example, or two-byte
arithmetic routines. The sensible thing to do is to
establish a library — on tape, disk or paper — of
the most commonly used routines, and merge
these into new programs as the need arises.

There are two major problems associated with
this, however. The first is the difficulty of writing
important, and often lengthy, routines in a
sufficiently general way that they can be inserted
in different programs without adjustment or re-
writing. The second problem is in writing useful
routines that are not rooted in one set of memory
locations, so that they can be relocated in memory
through a new assembly with a different ORG
address, and perform exactly the same function
there as in their original locations.

Both problems are aspects of the generality/
portability problem familiar to BASIC

programmers, and are solved in much the same
way — by using variables to pass values from
program to subroutine; by using local variables in
subroutines to make them independent of the
larger program context; and by avoiding the use of
absolute quantities (both numerical or string
constants) and program line numbers.

In Assembly language programming we have
become used to the idea of memory locations as
the equivalent of BASIC variables — programs
operate on the contents of the locations, whatever
those contents might be, in the same way that a
BASIC program operates on the contents of its
variables. Unfortunately, we have tended to refer
to memory locations by their absolute addresses, a
convenient habit at first, but one that must now be
renounced in the name of generality. The answer
is to use symbols instead of absolute addresses and
values, and to use the range of symbolic forms
offered by assembler pseudo-opcodes as the
equivalents of both variables and program line

236 THE HOME COMPUTER ADVANCED COURSE

