
320

E NTER
4C0

REVERSE
5

j
470 GOSUB 500
450 REIURN 570 RETURN

1000 1100
1030 GOSUB 1100

1150 RETURN

1060 RETURN

PRINT NAMES
2000

2050

Basic Programming

Step 3,5 PRINTNAMES

Print each item in the array until all items have
been printed

Each of the steps needed to build this program has
now been worked out in a reasonable amount of
detail, The SORT routine has only been sketched
roughly since it was dealt with fully in the last
instalment of the course. And SWAP, which is
`called' from within this subroutine, has been left
out completely. Let's now see how easy it is to
convert programs worked out in English into a
program in BASIC.

Step 4
1. FINDNUM

The three lines in Step 3.1 translate directly into
BASIC statements. The user is prompted by a PRINT
statement, the number is found by using an INPUT
statement and the array is dimensioned by using
the DIM statement:

PRINT °HOW MANY NAMES DO YOU WISH TO
ENTER?"

INPUT N
DIM AS (N)
RETURN

The variable N now contains the maximum
number of names to be entered. The DIM
statement dimensions a string array. String
variables contain strings of alphanumeric
characters instead of numbers. A string variable
name always ends with a `dollar' sign. A$ alone
could only contain one string. DIM AS (N) creates an
array that can contain `N' strings. Subscripted
variables have been dealt with earlier in the
course.

The RETURN statement transfers control back to
the main program at the line following the
subroutine call. Values assigned to variables in the
subroutine will be `carried back' to the main
program and can be used elsewhere in the
program, even in other subroutines.

2. ENTER

As long as the number of names entered is less
than N, the user needs to be prompted to enter a
name and this name must be added to the string
array. This calls for creating a FOR-NEXT loop; we
know that the first name in the array will be its first
element, and that the last one will be the Nth, so:

FOR X=1 TON
PRINT "ENTER NAME'
INPUT A$(X)
NEXT X
RETURN

That should suffice to enter all the names into the
array. But sharp readers will have spotted what
happens when we come to reverse the order of the
first and last names in the REVERSE subroutine.
Each element (name) in the array will have to be
pulled out again, then reversed, and then put back
in the array. Rather than complicate and lengthen

the program by doing that, it would be simpler to
call the REVERSE subroutine from within the ENTER
subroutine after each name has been typed in. The
name can then be reversed before it is assigned to
the array. To do that, we just have to add one line,
thus:

FOR X1 TON
PRINT 'ENTER NAME"
INPUT AS(X)
GOSUB [REVERSE]
NEXT X
RETURN

All the names in the array will now be in reversed
order (surname first, followed by forename) and
will therefore be ready for sorting.

3. REVERSE

To reverse the order of names, we need to know
where the `space' is separating the first name from
the surname. When we know where the space is,
we can use various functions to pull out parts of the
string and assign those parts to other strings.
Functions in BASIC are commands that perform a
predefined operation on the value following the
function name. This part is always in brackets.
Many functions are `built in' but it is also possible
to define your own. A typical `built in' function is
SQR (). This function `returns' the square root of
the value inside the brackets. So: LET A = SQR (9):
PRINT A will print a 3.

REVERSE uses the functions LEN (to find the
length of the string), INSTR (to locate the position
of the space), LEFT$ (to remove a specified number
of characters from the left of the string) and

120 GOSUB 250

9
130 GOSUB 400

9
140 GOSUB 1000

9
150 GOSUB 2000

Programs Within A Program
The main program this time
is very shcrt. All the real
work is done in the sub-
procrams(callet
subroutines in ens c). Each cf
the steps needed to make the
program work are separated
and written as snort mini-
programs . These are then
simply linked together by the
main program.

When :he pngrarr is run,
each timea GOSUB
statement is encountered,
the program branches to the
specified subroutine line
number and that section of
the program is then
executed. The end of the
subroutine is inlicated by
the RETURN statement. On
reaching this, the program
returns to the point
immediately after the GOSLB
that called the subroutine.

Subroutines can be
nested within subroutines.

The ENTER subroutine calls
ano:her subrou:ine called
REVERSE, and SORT
sorrietimes calls another
sub ,outine called SWAP.

Breaking down a problem
into separate scbroutines
linked by a simple main
program makes the
development and testing of
programs far easier

HE HOME COMPUTER COURSE 135

