
I

Accumulator
This is really tha cent-al register
of the CPJ. Arithmetic and logic
operations, as well as data
transfers. are chiefly conducted
via this register — more so in
the 6502 than the Z80

Arithmetic And Logic Unit
Comprises a binary adder and
logic gates, which permit
access tc individual bits of the
registers and data bus. Properly
controlled, it enables addition,
subtraction and Boolaan
operations

Processor Status Register
Whenever a CFU operation is
performed, the individual bits of
the PSR show some af the
effects of the operation — does
it cause a zero 'esult, for
example, or is There a carry bit
from an additicn operation?

Program Counter
This points to the address in
memory wherethe next op•code
to be executed by the CPU is
stored. The BASIC function
USR(address) causes the
address specified to be loaded
directly into the program
counter, so tha: CPU execution
proceeds from that point

Stack Pointer
Carries the adcress cf the next
byte in RAM of free workspace
for the CPU's use. Wienever the
CPU writes some data to the
stack, the stack pointer is
changed to point to the net free
byte

Index And General Purpose
Registers
Incex recisters are used bythe
CPU to address memory in a
variety o ways, while the
General Purpose Recistersare
used as general workspace, and
for specific CPU purposes

PART 7/MACHINE CODE 1 l __

In the BASIC Program Text Area this line:
10 REM************..,,.*...*..*

has 25 consecutive bytes containing S2A, the
ASCII code for "'. These bytes are never
inspected by the operating system or the BASIC

interpreter because to them the command REM

means 'ignore the rest of this line'. Once the line
has been entered into a program in this form, a
machine code subroutine can be loaded into the
asterisk bytes, where it will reside untroubled by
the interpreter. The big advantage of this
apparently messy method (often used in
programs for the expanded ZX81) is that when
you SAVE, and subsequently LOAD, the BASIC

program, then the machine code subroutine goes
along with it. Using the other methods described
usually means having to save the machine code
separately from the BASIC program. The trouble
with this method is that LISTing the line causes the
operating system to interpret the machine code
bytes as ASCII character data, which may corrupt
the screen display. This explains why there were
warnings embedded in the Demonstration
programs on page 19 for the BBC Micro and the
Spectrum. The Commodore 64 version of that
program loads the machine code subroutine into
the cassette buffer, whereas the BBC and
Spectrum versions load it into their opening REM
line — hence the warnings about not LISTingthese
versions of the program.

Once you've written an Assembly language
program, assembled it into machine code, and
LOADed it into the RAM of your choice, then you
can proceed to execute it. This is done through
the nnslc commands CALL (BBC only), SYS
(Commodore 64 only) or USR (all three
machines). Each of these commands is followed
by the address of the first byte of the machine
code program, wherever it's stored. All three
commands mean the same thing to the
interpreter: `execute the machine code program
starting at the address given, and return to
execute the next BASIC instruction when the RET or
RTS op-code is executed'. It is similar to the
GOSUB command in BASIC.

In the last instalment we wrote a program to
copy one byte's contents into another byte by
loading the accumulator with the contents from
one address, and then storing the accumulator's
contents in the other address. This illustrates the
centrality of the CPU's role in the entire system:
data and control must flow from memory,
through the CPU, and back to memory. Whereas
in BASIC we can write LET X=Y (meaning `copy the
contents of Y directly into X'), in Assembly
language we have to copy into the CPU from
memory, then out of the CPU back into memory.
The CPU registers (see the accompanying panel)
are the bytes of RAM inside the CPU itself where
data from memory is stored or manipulated. Both
the Z80 and the 6502 have a register called the
accumulator, which is referred to by a majority of
the Assembly language instructions, and is the
register in which arithmetic is chiefly done.

Suppose we want to add the two numbers $42
and S07 (remember that the symbol S means the
number is hexadecimal). We simply put one of
them into the accumulator, and add the other in
on top of the first — their sum will literally
'accumulate' in the register. Here are the
instructions to perform this:

z8U 6502

LD A,S42
ADC A,S07

LDA #S42
ADC #S07

Here the Z80 instructions both refer to the
numbers to be loaded and added, whereas in the
6502 version the numbers are preceded by #,
which shows that they are actual numbers rather
than addresses, Thus, LDA #$65 means `load the
number $65 into the accumulator', whereas LDA
$65 means `load the contents of the byte whose
address is $65 into the accumulator'. Similarly, the
add instruction, ADC (it happens to be the same
mnemonic in both Z80 and 6502) means in this
case: `add an actual number into the
accumulator'. The numbers $42 and $07 are said
to be `immediate data', and LDA # $42 may be read
as `load the accumulator with the immediate data
#$42'.

After these two instructions have been
executed, the sum of the numbers will be
contained in the accumulator. It is `invisible' to us
there, so we must store the accumulator contents
in a byte of RAM where it can be inspected. The
program must end with a return instruction, and
must begin with an instruction to put an
associated CPU register into the correct state, so
the full programs read as:

280

Machine Code Assembly language
Al AND A
3E42 LD A,S42
CE 07 ADC A,S07
32???? LD BYTE1,A
Cy RET

6502

18 CLC
A942 LDA #S42
6907 ADC #S07
8D???' S-A BYTE1
60 RTS

We won't bother about the meaning of the first
instruction in either program at the moment, but
notice that the fourth instruction contains the
symbol BYTE'', rather than an actual address. The
value of BYTE1 will be different from machine to
machine, so well just use the symbol here, and
replace it by a real hex number when we come to
assemble the code.

Now we must decide where to locate the
machine code, and what address BYTE1
represents. Choose a place to store the machine
code and then make BYTE1 equal to the address of
the byte after the end of the program, and put that
address in to-hi form into the machine code.
After that use the Monitor program on page 118
to load and execute the machine code, and to
inspect the byte where the result — $49 — should
be stored.

THE HOME COMPUTER ADVANCED COURSE 137

