
PRIMITIVE PARTS
examples are FNA(P), TAN (P), LEFTS(PS,5) and
POKE P,5, where P, PS and 5 are all parameters. In
the same way, an algorithm's results are passed
back as parameters. If the programming language
being used has local variables (e.g. PASCAL and c)
then the parameters would normally be passed
with a procedure call, as in:

procedure(parametertparameter2,etc.);

It is an essential first step in designing an
algorithm to consider the contents of the input
and output parameters, their types (integer,
floating point, real, string, etc.) and their
magnitudes and ranges.

When the input and output of the algorithm
have been defined, the next step is to form ideas
as to how one can be transformed into the other.
Unfortunately, there is no 'cookbook' method for
creating these transformations as they require
creativity and ingenuity. However, there are
several ways of helping the process along.

The most obvious and most often overlooked
is to borrow the algorithm from somewhere else.
At the simplest level, the in-built functions of a
programming language provide many useful
algorithms, such as string-handling,
trigonometric functions, input/output, and
(possibly) sorting and matrix manipulation.
Apart from this, the algorithm needed may
already exist in another of your programs. The
code for this could be incorporated in the new
program (creating your own library of algorithms
is extremely useful). In addition, there are
published collections of algorithms that are often
available from public libraries. The Art of
Computer Programming, Vol 1: Fundamental
Algorithms by D. E. Knuth, although heavy
going, is highly recommended.

Programs published in the computer
magazines are well worth scrutinising for routines
that may be of use. Finally, there are algorithms
that are used in other pertinent domains, and
although they were never meant for computing
they are extremely useful. The accountancy
section of the local library will be full of books
containing formulae for calculating balances and
depreciation. A little research among these could
make writing an accounts program a lot easier
and the result is likely to be a lot more reliable.
The same is true for other disciplines:
engineering, electronics, maths, etc.

Whether adapting an existing algorithm, or
creating one from scratch, there are certain
criteria that must be applied to each instruction it
contains. These are definiteness and effectiveness.
Definiteness means that the instruction should

An algorithm is a series of instructions that
describe how some process may be per-
formed. A knitting pattern is an algorithm;
so is a recipe; and so is a computer
program. We discuss how an understanding
of the principles of algorithms can improve
your programming.

An algorithm describes a process either in terms
of other processes that have already been defined,
or in terms of processes that are so basic that they
do not need to be defined. Thus, in a recipe, one
instruction may be 'prepare a bechamel sauce',
where a bechamel sauce recipe (algorithm) has
been given elsewhere in the cookbook. Another
instruction may be 'bring the mixture to the boil',
where the operation of bringing something to the
boil is assumed to be fully understood by the user.
In programming terms, algorithms are
constructed from instructions that either use
algorithms (procedures, routines, functions)
written elsewhere in the program, or ones built
into the language (commands such as PRINT and
DIM, or maths functions like LOG and TAN).

This article looks at how algorithms are
constructed from other algorithms and primitive
processes. The primitives at the disposal of a
programmer are the commands and functions in
the language. From these, algorithms are written
that can do small things (move a sprite, say, or
accept a number as an input). These algorithms
are then used to build more general algorithms
(updating the game display, or controlling a menu
system), and these algorithms are in turn used as
parts of larger ones again until the whole
program, viewed as a single algorithm, is written
in terms of lower-level algorithms. This concept is
the basis of what is known as structured or
modular programming and is a subject we will
return to later in the course.

DESIGNING ALGORITHMS
An algorithm has an input and an output. This is
just to say that, as a process, the algorithm will
work on some initial data to produce a result. This
initial data is passed to the algorithm from outside
in the guise of 'parameters', which remain
constant for any particular use of the algorithm
but may change between different uses. Passing
parameters will be familiar to even a novice
programmer since the simple program:

10 PRINT "Hello World!"

passes the parameter 'Hello World!' to the
algorithm called by the PRINT command. Similar

386 THE HOME COMPUTER ADVANCED COURSE


