
INCLUSIVE AND EXCLUSIVE OR
There are two possible meanings of the word OR
in everyday English. The first meaning is the one
that we have already met, namely:

One OR the other OR both.

The second meaning has important consequences
for logic circuit design:

One OR the other but not both.

For example, to qualify for a competition for two-
wheeled vehicle owners you could own a
motorcycle OR a bicycle (or you may own both).
This is a case of the inclusive use of OR. On the
other hand, you may be tall OR you may be short
(but you can't be both). In this case the use of the
word OR excludes the possibility of both
statements being true.

In logic circuits this exclusive OR (or XOR)
operation is a useful tool and can be built up from
the AND, OR and NOT set of gates, The truth
table for XOR is:

INPUTS OUTPUTS

A B A-V-B

0 0 0

0 1 1

1

0

1 0

1 1

As can be seen from the second and third rows of
the truth table, a value of one can be produced as
output if:

NOT(A) is ANDed with B
OR

A is ANDed with NOT(B).

This can be written as a Boolean expression in
this way: X = A.B + A.B. A possible circuit to
produce the Exclusive—OR operation from the
above Boolean expression would be:

A A A.BNor
X=A.B+A.B

ANO

A.B

B AND

B

This would produce a five gate circuit. We shall
see later how it is possible to simplify this circuit to
one with only four gates using Boolean algebra.

OMPUTER SCIENCE /LOGIC CIRCUITS

THE BUILDING
BLOCKS OF ADDITION
In the first instalment of this course, we
looked at the three kinds of logical building
blocks (AND, OR, and NOT) and saw how
these may be combined together to
produce simple logic circuits. Now we begin
to investigate the way in which these logic
circuits can be used to perform the function
of addition.

The system of using algebraic notation to describe
logical relationships is known as Boolean algebra,
and is named after the mathematician George
Boole (1815-1864). Boolean algebra is of great
use in computer circuit design because it allows
mathematical simplification of logic circuits. This
means that fewer logic gates are required to
perform a given function, which in turn increases
the speed of operation of the machine.

We have already met the Boolean notation for
the output from the three basic logic gates: AND
(A.B), OR (A+B), and NOT(A). More complex
circuits can be represented by using these
expressions. For example, the Boolean
expression X = A + A.B represents this circuit:

It is important to notice that the order in which
the operations AND and OR are carried out is
significant. The simple rule is that AND has
priority over OR (as well as over NOT). If it is
wished to reverse the order of priority then
brackets have to be used, as in this example: X =
(A + B) . B. For this expression the two inputs are
ORed together before being ANDed with the
negative of B. Here is the circuit diagram:

A

A+8 X =IA -BI.B
g AN

B

When drawing a logic circuit from its Boolean
expression it is often best to start at the output
and work backwards to the inputs. This method
produces better circuit diagram layouts.

32 THE HOME COMPUTER ADVANCED COURSE


