
Basic Programming

1

need to consider, so BTM could be set to MID.
Slightly more efficient, however, is to set BTM to
MID + 1, since we already know that ARRAY(MID) is
not equal to the search key. Similarly, IF
ARRAY(MID)> SCHKEY$, TOP maybesettoMID - 1.

As an interim step towards developing a fully
working routine, the program shown can take a
dummy input (which needs to be in exactly the
same format as the MODFLD$ fields) and will either
print RECORD NOT FOUND if there is no match, or
RECORD IS NO (MID) if there is a match. As the
routine starts with line number 13000, it can be
added on to the end of the program as presented
on page 399, and will work as long as line 4040 is
changed to IF CHOI =1 THEN GOSUB 13000.

Line 13240 contains the STOP statement. This
will stop the program temporarily as soon as the
RECORD NOT FOUND or RECORD IS NO (MID)
messages are displayed. The program can be re-
started at the same line number, without losing
data, by typing CO NT. Without STOP, the program
would rush on to the RETURN statement in he
13250 and the message would appear too briefly
to be legible.

Let's consider this program fragment in more
detail. Line 13100 sets BTM to 1, the position of the
lowest element in the MODFLD$ array. TOP is set to
SIZE-1 in line 13110. This is the position in the
MODFLDS arrays where the highest element is
located. Line 13120 initialises a loop that will only
be terminated when either a match is found or no
match is known to exist.

Line 13130 finds the mid point of the array by
halving the sum of the bottom and top index of the
array (INT is used to round off the division, so that
MID cannot assume a value such as 1.5). There's a
chance that the contents of MODFLD$(MID) will be
the same as the search key (SCHKEYS), but if they
are not the same, as is likely, L will be set to 0,
ensuring that the loop will be repeated. If the test in
line 13140 fails, MO DFLDS (MID) will either be lower
or higher in value than SCH KEYS. The value of BTM
will then be set to one more than the old value of
MID (line 13150), or the value of TOP will be set to
one less than the old value of MID. The reason the
value of MID itself is not used is that the failure of
the test in line 13140 has already demonstrated
that MODFLDS(MID) is not the target we are
searching for and there is no point in looking at
that element of the array next time round the loop.

If no match is found, the value of BTM will
eventually exceed the value of TOP. The loop can
be terminated (line 13170) and a RECORD NOT
FOUND message printed (line 13200).

This program fragment is presented for
demonstration purposes and to enable the search
routine to be tested. As it stands, its use is rather
limited. Without the STOP in line 13240 we
wouldn't even have time to see the message
flashed on the screen. What is required is a display
of the full record, as it was originally typed in.
Once the record number is known, it is a simple
matter to retrieve any of the additional
information required — NAMFLDS, STRFLDS etc.

41S THE HOME COMPUTER COURSE

Below the display of the record, we would
probably want a message such as PRESS SPACE BAR
TO CONTINUE (back to the main menu) and perhaps
further options such as PRESS "P" TO PRINT.

Not so easy, unfortunately, is deciding how to
handle the input of *FNDREC*. In the program
fragment, the input expected (in line 13020) must
be in the standardised form — JONES PETER, for
example. This is clearly not good enough. People
don't think of names in inverse order, and it's an
unreasonable burden on the user to have to enter
the name in upper case letters. Additionally, the
slightest deviation between the name input
originally would result in a RECORD NOT FOUND.
The first two problems could, one would expect,
be handled by *MODNAM* . The third problem of
how to cope with an approximate match is far
more interesting, but very much harder to solve.

Before considering this problem, let us see why'
MODNAM* will not solve the first two problems. If

you go back and look at *MODNAM, which starts
at line 10200, you will discover a good illustration
of one of the commonest traps into which
programmers fall — lack of generality. This
subroutine ought to be able to handle conversions
from `normal' names to `standardised' names
whenever this operation was needed. Even
though it was written as a separate subroutine, it
was clearly written with ADDREC* in mind. It
assumes that the name to be converted will always
reside in NAMFLD$(SIZE) and that after conversion
the modified name will always be stored in
MODFLDS(SIZE). Faced with this situation, the
programmer has three choices: either completely
rewrite *MODNAM* to make it general, which
would in turn involve further changes in other
parts of the program. Or write an almost identical
routine just to handle the input for *FNDREC*,
which represents wasted effort and takes up more
space in memory. Or resort to some bad
programming technique to allow the unmodified
*M 00 NAM * routine to be used. This last alternative
is in some ways the least attractive. It will solve the
problem, but the actual working of the part of the
program that has been modified is likely to be
unclear, even to the writer of the program, and a
nightmare to anyone else trying to use the
program.

The moral of the story is: make subroutines as
general as possible, so that they can be called by
any part of the program.

To illustrate bad programming technique, or
`dirty' programming as it is often called, and to
show how unclear it can make the program,
consider line 13020 of the program fragment,
INPUT "INPUT KEY ";SCHKEYS and then look at the
modification or `fix' that would allow *MODNAM*
to be used:

13020 INPUT "INPUT KEY';NAMFLDS(SIZE)
13030 GOSUB 10200: REM `MODNAM*

SUBROUTINE
13040 LET SCHKEY$ = MODFLD$(SIZE)
13050...


