
Nobody could call the Commodore's
version of the BASIC language advanced, but
— like Commodore machines themselves -
it has a sturdy simplicity and logic. There
may be glaring deficiencies in, for example,
its commands but these can usually be
compensated for, and its screen editor is still
one of the best available.

All CBM machines allow long variable names, but
only the first two characters of a name are scanned
by the interpreter, so variables such as FUJIYAMA
and FUTILITY are allowable, but equivalent. Thus
the output of this fragment:

100 FUJIYAMA=17:FUTILITY=2*FUJIYAMA
200 PRINT FUJIYAMA,FUTILITY

is:

34 34

Positioning The Cursor
The ability to include cu'sor
commands in a st-mg quantity can
make graphic design on the
Commodores easy — especially
when coupled with the powerful
screen editing command

If Commodore BASIC supported the
1 00 IPtN1 AY(PRINT AT command, then

positioning the cursor would be
simple.

Since it doesn't permit this, we must
use the programmable cursor
feature:

Initial se PCSITIONS with a HOME
and 24 CRSR DOWNs. -hen put the
row and column parameters in this
expression.

If you have a lot o` screen formatting1/ to do, it mi rht be worth putting the

50 POSI

=

T*ONf

1

7

=
"i ^004CCQ1IC awLmmmamta

••
 ,̂

cursor positioning command into a
109 PRIN

- LEFTt!P
1
JS!T1;N$.17>TRE(4-1 >'r • /isubroutine, and then initialisng the

variables ROW and COLUMN with
I f'+ J

y
1T1 : 1M 4AIP 1 A G"

10N ROW

C0L
coLUrw=4 uopL

6

^ IN00 PRINT '* the screen position required before
We END
10(0 PRINT LEF7$(POS[T10NS,R0Y)TRB(COLUMN-1 y . RETJRN calling the subroutine

94 THE I-tOME COMPUTER ADVANCED COURSE

PROGRAMMING PROJECTS/COMMODORE BASIC

COMMANDING
CODES

This applies to all variable types: floating point
(e.g. NUMBER), integer (e.g. NUMBER%), string
(e.g. NUMBERS), and array (e.g. NUMBERS(62,47)).
The variable types are themselves conventional,
but on the Vic-20 integer variables are unusable
because the machine does not suppo rt integer
arithmetic; the integer type was retained simply
for compatibility with other CBM machines that
support integer arithmetic.

An annoying consequence of the variable name
rules is that a valid-looking name may be illegal
because its first two letters make a reserved word
— START, for example, is equivalent to ST as a
variable name, and ST is a reserved word.

Array variables may have up to 225 dimensions
and are limited in extent only by the amount of
RAM ava ilable. The first clement of any array is
element(0), so DIM EX(6) creates an array of seven
elements: EX(0), EX(1), EX(2)...EX(6). The DIM
statement is actually unnecessary here, for if the
interpreter encounters a single-dimension array
variable for which no DIM statement h as been
executed, a default dimension of 10 is assumed; if
the subscript of such an array is greater th an 10,
then a BAD SUBSCRIPT error will result. This is a
convenient facility but it does not encourage good
programming practice: the interpreter has to
rearrange memory whenever it encounters a DIM
statement (or the first reference to an unDIMmed
array), so all arrays should be D I M med at the same
ti me at the start of a program, before any simple
variables are employed. No great calamity will
occur if this isn't done, but speed of execution will
suffer slightly.

Because of the way most BASIC interpreters
work, program execution can he speeded up by
initialising the most commonly used program
variables in their order of importance; this can be
done with assignment statements or with the DIM
statement. A line such as:

10 DIM AS(10,24),K,L,SCORE

will have no obvious effect but is a quick way of
placing the variables K,L, and SCORE high in the
symbol table, thus making them more read ily
accessible to the interpreter, therefore increasing
program execution speed.

A look through the list of BASIC keywords in a
CBM user manual (of which more later) reveals a
few omissions from, and additions to, the full
Microsoft set. The most important omission is
probably INKEY$ and the most signi ficant
additions are -IMES and STATUS.

INKEY$, the keyboard-scanning function, is
replaced by the statement GET. Like IN KEYS, it
causes the first character of the keyboard buffer to

