
Learning machine code requires
a considerable conceptual jump
from Basic, but it offers a
massive increase in speed and
efficiency

A Step At A Time
Program

The machine code progran is The prcgram counter (PC) is a
stored in one area of memory, register withii the CPU that
though the data that it A points to the nstrution being
operates on may wed be 8 executed
elsewhere in memory Note 3F

that the Dperands (e g.$3F80) ADC

are stored in the fore of two 81
3Fbytes, with the lower byte
STA(S80) before the higher bye
93($3F) nn .3

Memory Address

SO493
$0493

S3F80 03 'w LDA $3F80

S3F81
a AADC S3F81

Al machine ccde programs
are made up from simple The first instructioi loads the
operations that transfer bytes conterts of location S3F80
of memory inb the CPU's ii.e, the value 03) into the
internal registers, process „ accumulator. The second
them, and retcrn them to a adds the contents of S3F81
location in memory. This ii.e. the value 05) to the
diagram shows the program ..: accumulator. The third stores
needed to add the contents of " the contents of the
two locations, and store the accumulator (now 08) in
result ina third memory location $0493

® Passwords To Computing

Machine Code

So far in THE HOME COMPUTER COURSE, all our
programming has been centred around the
language BASIC, because it is both versatile and
easy to use. However, as your experience grows,
and the programming projects you tackle become
more adventurous, it will not be long before you
encounter the limitations of this language. You
will soon find that graphics can't be moved around
the screen as fast as you would like, and that you
often have to resort to the confusing PEEK and
POKE commands to make the best use of your
machine's facilities.

By contrast, programming in machine code
imposes very few constraints on what you can do,.
and compared with BASIC, gives the impression of
almost infinite speed. However, comparatively
few home computer owners make the jump from
BASIC to machine code, partly because using
machine code is a far more labour-intensive

programming process, and also because it is
conceptually quite different from BASIC or any
other high level language. Nevertheless, it is
extremely worthwhile to have an understanding of
machine code; and in this article, the first of two,
we look at the fundamental procedures involved
in using it.

Machine code, as we have explained before, is
the language understood by the microprocessor
(the CPU) that forms the heart of your computer.
This microprocessor can only perform very simple
functions (it can add two digits of a number, for
example, but can't multiply them). It does,
however, perform these functions at very high
speeds. Every operation of a microprocessor is
specified in terms of the number of `clock cycles'
taken. If the CPU in your computer runs at 1
MHz, then a clock cycle is one microsecond, and
an operation that takes four `clock cycles' to
perform does so in four millionths of a second.

As a consequence, any program written in
machine code will consist of a large number of
instructions, and any function must be built up `by
hand' from simple operations. All machine code
programming consists of manipulating individual
bits or bytes of memory, using simple logic
functions like AND, OR and NOT, and elementary
binary arithmetic.

This is one reason why writing machine code is a
slow task; the other is that it is the programmer's
responsibility to know where everything is kept in
memory. In aASIC, whenever a statement like LET
A=5 is encountered, it is the job of the BASIC

interpreter to find a space in memory to store that
variable. Furthermore, whenever A is referenced
later in the program, it will remember where to
look for the necessary data. When you first start
programming in machine code you discover that

u you have to specify an address (a memory
1 location) for every piece of data you need to store,
w and it is up to you to ensure that it is not

accidentally overwritten with other pieces of data.
Let's look at what machine code consists of.

(Incidentally, all our examples will refer to eight-
bit CPUs, such as the Z80 and 6502; 16-bit
devices work in a similar manner but process twice
as many bits with each operation). The
microprocessor is connected to the computer's
memory by two busses (a bus is merely a group of
wires or lines): the address bus and the data bus
(see page 144). There is also something called the
control bus, but this provides timing signals for the
CPU and is not used by the programmer.

The address bus is 16 bits wide, and by placing a
pattern of bits on this bus, the CPU can select any
of the 65,536 bytes in its `memory map' (see page
329). In a typical home computer, some of these
locations will consist of RAM, some of ROM,
some of special input/output chips, and some will
be unused. If the CPU wants to read a memory
location (one of the lines in the control bus

448 THE HOME COMPUTER COURSE

