
PROGRAMMING TECHNIQUES."

IMMI.111111,

STYLE COUNSEL
Documenting a program involves much
more than adding comments to it or writing
user instructions. A well-documented
program has sufficient information to
indicate what it is meant to be doing, and
how it is meant to be doing it. We show how
a simple program, in BASIC and PASCAL, can
be given suitable documentation.
Consider the first version of our program (Listing
1). It is clearly a great mystery; what it does is
anyone's guess. Apart from saying that it 'inputs
two numbers, multiplies them with two other
numbers, adds the two results together and prints
the answer', there is very little evidence of the
precise task that the code performs. Now look at
the second version of the program (Listing 2). All
is revealed. Yet no comments have been added, no
program titles or REM ark lines inserted and no
external documents have been produced.

It is worth taking a detailed look at the
differences between these two versions. First of all,
the meaningless numbers of the first listing have
been replaced by names (AYEAR and AM ONTH).
Numbers whose values do not change while the
program is running are called constants. Some
languages, such as PASCAL, have a special notation
for constants (in Listing 2, the two constants are
defined separately from the variables), while other
languages, like BASIC, do not. (Lines 10 and 20 of
the BASIC program use variables to define the
constants.) Giving names to constants is really
only worthwhile if they are going to be used
frequently, otherwise comments in the program
would serve the purpose just as well.

The second crucial difference is that all the
confusing variable names have been given longer,
intelligible names. The ones that we chose here
(NYEARS to replace A, ageinsecs instead of e, and so
on) were picked because they are each less than 10
characters long, and the first two characters
distinguish them from each other. The reason for
this last requirement is explained shortly.

Generally, it is good practice to give your
variables names that are related to the role they
play in the program. For example, you could call a
loop counter LOOP (instead of the usual J or I), and
the first and last values of the counter could be put
into constants or variables with appropriate
names. Thus, a loop reading like this:

FOR J = 1 TO 10 ... NEXT J
could look like this:

FOR LOOP = FIRST TO TENTH ... NEXT LOOP
Long variable names do, of course, take longer to
type in and use up more memory, but they do have

the advantage of making programs easier to
understand and speed up the debugging process.
If your language uses only the first two characters
of a name to distinguish between them, make sure
that the names you choose differ in the first two
characters. Thus, two long variable names (say
COD ENO and COMP) may look different to the
programmer, but be indistinguishable to the
computer.

Another major difference between the listings is
that the second uses long and meaningful prompts
for its input and adds a sensible explanation to its
output (the PRINT lines in BASIC, the write lines in

PASCAL). This achieves two very important things.
The first is that it makes the program more
readable. Even if the variables were single letters,
the program would still make a lot more sense than
previously. The second, and more important,
benefit is that it makes the program accessible,
even to someone who has never seen it before.

PROGRAM LAYOUT
PASCAL users will already be aware of the
advantages of laying out a program neatly on the
screen. Very simple features — like indenting lines,
leaving blank lines and using a mixture of upper
and lower case — can turn an impenetrable mass
of symbols into a tidy and legible piece of logic.
Formatting a program for the screen or the printer
really comes into its own when your programs use
loop constructs (FO R . . . N EXT, WHILE.. .WEND,

REPEAT ...UNTIL) and especially when loops are
nested inside other loops.

Having said this, it is a lamentable fact that most
BASICS give very little option about how you lay out
the program. In this respect, the compiled
languages like PASCAL are far more flexible in that
they are usually written with a text editor (or word
processor). On the other hand, editing a BASIC

program is generally a rather crude affair (unless,
like Microsoft's msAsic, your interpreter will take
an ASCII version of the program and 'tokenise' it
to turn it into a runnable program). Worse still,
many BASICS will take the programs you write and
reformat them to remove indentation! Some, on
the other hand, will add indentation for you. The
BBC Micro is quite good at this, but you have to
remember to give it the LISTO command. Most
PASCAL systems will include a formatter and they
are generally very useful. However, for the sake of
your own clarity of thought, it is a good idea to
devise some formatting conventions, within the
limits of your language.

Comments are, of course, the main way of
documenting your programs within the programs
themselves. Again conventions vary from

354 THE HOME COMPUTER ADVANCED COURSE

