
n
Basic Programming "

43.75
80 DATA 145.9, 46.2, 260, 29.05, 50.7, 151.2, 43.4,

260
90 DATA 26.2, 44.6, 155.3, 49.2, 260, 19.3, 39.8,

150.95
100 DATA 48.3, 260, 20.45, 32.6. 147.65, 52.3,

260, 30.5
110 DATA 26.10, 150.35, 58.4, 260, 29.5, 22.4,

148.05, 61.2, 260
120 DATA 28.25, 24.45, 148.6, 59.45, 260, 31.15,

34.5
130 DATA 154.9, 23.5, 260, 31.05, 39.5, 160.05,

45.95
140 DATA 260, 28.95, 42.2, 210.6, 51.25
150 END

There are a number of important points to note
about this program. The first is that the DIM
statement is right at the beginning of the program.
A DIM statement should be executed only once in a
program and so it is usual to place it near the
beginning or before any loops are executed. The
second point to note is that there are two
FOR... NEXT loops, one to set the `row' part of the
subscript and one to set the `column'. These two
loops do not follow one after the other; the

y are
`nested' one inside the other. Notice the limits
chosen. FOR R =1 TO 12 will increment the value for
the row from one to 12; FOR C = 1 TO 5 will
increment the value for the column from one to
five.

Right in the middle of the nested loop is the
READ statement. The crucial part of the program
is:

20 FOR R=1 TO 12
30FORC=1T05
40 READ A(R,C)
50 NEXT C
60 NEXT R

The first time through, after lines 20 and 30 have
been executed, the values of R and C will both be
one, so line 40 will be equivalent to READ A1,1).
The first item of data in the DATA statement is 260,
so this value will be assigned to the first row and
the first column of the array. The choice of eight
elements to each DATA statement is purely
arbitrary.

After that has happened, the NEXT C statement
sends the program back to line 30 and the value of
C is incremented to two. Line 40 is now equivalent
to READ A(1,2) and the next item of data, 25.1, will
be assigned to the first row and the second column
of the array. This process is repeated until C has
been incremented to 5. After that, the NEXT R
statement in line 60 returns the program to line 20
and R is incremented to two. Line 30 will set C to
one again and so now line 40 will be equivalent to
READ A(2,1).

Nesting loops in this way is very useful, but care
is needed. Each loop must be nested completely
within another loop and the order of the NEXT
statements must be carefully observed. Notice
how the first loop, FOR R, has the second NEXT
statement. When there are two loops, one nested

inside the other, the first loop is called the outer
loop and the second is called the inner loop. The
whole of the inner loop will always be completed
before the index of the outer loop is incremented.
It is possible to nest loops to as many `depths' as
required by the program, but such programs can
become complex and difficult to follow and
debug. It is bad programming practice to put
branching instructions inside loops and G OTOs are
to be avoided.

Let's look at the DATA statements. Notice that
commas are used to separate data items, but there
must be no comma before the first data item or
after the last. We have inserted spaces between
each data item, but this is not normal. Mistakes
when entering the data are easy to make and
difficult to spot later. As many DATA statements as
required may be used. Each new line needs to start
with a DATA statement. The data is read in one item
at a time, starting from the beginning of the first
DATA statement and working through until all the
items have been read. Be sure that the number of
data items is correct or you will get an error
message when the program is run.

The program presented so far does not actually
do anything except convert appropriate data into
a two-dimensional array. After the program has
been entered and RUN, nothing will apparently
happen and all you will see on the screen will be
the BASIC prompt. To test that the data is correctly
placed, try a few PRINT commands. (A command
in BASIC is a keyword that can be immediately
executed without having to be within a program
and does not therefore need a line number.
Examples are LIST, RUN, SAVE, AJTO, EDIT and
PRINT). PRINT A(1,1) <CR> should cause the
number 260 to appear on the screen. What will be
printed by the following commands?

PRINT A(12,1)
PRINT A(1,5)
PRINT A(5,1)
PRINT A(5,5)

To make the program do something useful, it will
need to be extended. As it stands it forms an
adequate basis for a `main program'. To use it as
part of a larger, more useful program, modules
can be written as subroutines to be called by
GOSUBs inserted at suitable points before the END
statement.

In the early stages of designing a household
accounts program, it is best to start with a simple
written description of the general requirements.
We might decide that we want to be able to have
totals and averages calculated for monthly
expenditure or by category (electricity, for
example). We can work out the details of how to
derive these results at a later stage. If there is a
choice to be made within the program about
which subroutines we wish to he executed we will
probably want to be prompted by a `menu' which
will direct control to the appropriate subroutines
as a result of our response. An early sketch of the
program at this stage might look like this:

THE HOME COMPUTER COURSE 195


