
In the first two instalments of the project we
designed routines to set up the scenario for
our Minefield game. Now, we look at the
control of movement from the keyboard,
and inspect the parts of the program that
detect collisions between the player
characters and the mines.

BBC BASIC has no fewer than four commands that
respond to a single keypress. The choice of
command will obviously depend on the desired
usage. I N KEYS and I N KEY are normally used when
you want to wait a certain length of time for a
possible keypress before carrying on with the rest
of the program; GETS and GET on the other hand
will always halt program execution until a key is
pressed. These last two commands tend to be used
when a response to a question is required, such as
Another Game YIN?'. If GET or GETS is used then
the program will wait for an answer. In this case,
the only acceptable answers are 'Y' and 'N'. We
can use a loop to REPEAT the GET instruction UNTIL
the answer is 'Y' or 'N', as follows:

1000 PRINT "ANOTHER GAME YIN?"

1010 REPEAT

1020 A$=GET$
1030 UNTIL AS="Y"OR A$="N"

1040 Etc

If GETS or IN KEYS is used then the key pressed is
interpreted as its character string, as in the above
example. If we use GET or IN KEY then a numeric
rather than a string value is returned; this value is
the ASCII code of the key pressed. These options
allow the programmer to test for keys that do not
have a corresponding character, such as the
Return or cursor keys. The statement *FX4,1 may
be used to make the cursor keys return ASCII
codes. If this is done, the keys have the values:

Left cursor 136

Right cursor 137

Down cursor 138

Up cursor 139

Let us say that we wished to accept only left and
right cursor inputs to our program. The following
program segment uses IN KEY to wait for a quarter
of a second for an input:

1000 *FX4,1:REM TURN ON CURSOR ASCII MODE

1010 REPEAT

1 020 A=INKEY(25)

1030 UNTIL A=136 OR A=137
1040 *FX4,0:REM RESTORE CURSOR TO EDIT MODE

434 THE HOME COMPUTER ADVANCED COURSE

COLLISION COURSE
The parameter 25 in line 1020 tells the computer
to wait 25 hundredths of a second before going on
with the program.

These statements do not test the keyboard itself
but affect an area of memory inside the computer
called the keyboard buffer. This is a temporary
storage space for characters that are input from
the keyboard, and is rather like a cinema queue.
New characters typed in tag on to the end of the
queue and the processor takes characters from the
front of the queue. In this way, if you type in
characters faster than the processor can handle
them, they are not lost but just wait their turn in the
keyboard buffer. As IN KEY, GET, IN KEYS and GETS
normally test the front of the keyboard buffer
queue you have no way of knowing how long a
particular character has been sitting in the buffer
waiting to be processed. In games that are
controlled from the keyboard this can make for a
sluggish response, as the program may be
processing earlier key presses whilst the player is
making new ones. For example, if you fill the
keyboard buffer with cursor-right codes then all of
these will need processing before the program can
respond to a cursor-left command. This can leave
the player frantically pressing the cursor-left
button and wondering why the object being
controlled is still moving right!

There are two solutions to this problem. The
first is always to clear out the keyboard buffer just
prior to testing it. This can be done using the
statement *FX15,1. Alternatively, we can use a
further variation of IN KEY. As described above,
IN KEY() waits for a length of time, specified by the
number in the bracket, for a key to be pressed
before continuing with the program. We can,
however, make IN KEY test the keyboard instead of
the keyboard buffer by specifying a negative
number in the brackets following the command.
Each key has a negative number assigned to it for
this purpose, a full list of which is given on page
275 of the User Guide. In our program, we shall
use the cursor keys to control movement. The
values of the keys to be used with IN KEY are:

Cursor-left —26

Cursor-ridht —122

Cursor-down —42

Cursor-up —58

The following procedure uses IN KEY to test the
keyboard directly for each of the four cursor keys
in turn. If one of the keys is being pressed then
another procedure (move') is accessed, with two
parameters being passed. These parameters hold
information about the direction in which the mine

