
!fi t

q4 4

re

:7 __ _

 4 P *-II

ri
changes the way we look at data. A file of
recognisable names and addresses has become a
block of anonymous data. Computers do not need
to know what a data item means, only where it is,
and what to do with it.

The data in the array Shops() is in alphabetic
order, but this is unlikely to be the most
economical order in which to visit the shops.
Suppose the computer works out that the best
delivery schedule is:

1) Wilson Bros 7 High Street
2) Atkinsons 22 High Street
3) Edwards 49 Barking Lare
4) Brown & Co 108 Alma Road
5) Youngers 31 Parsons H II

6) Wrights 65 Lower Road

This schedule might be stored in another array,
but that would mean the same information is
stored twice in the memory. Micro owners will
know that RAM is limited, and it might he
inconvenient or impossible to duplicate data in
that way, so another method is needed.

If the actual data are replaced by their position
numbers in the array Shops(), then the delivery
schedule looks like this:

BLOCKNAME: Deliveries
1) 4

2) 1
3) 3
4) 2
5) 6
6) 5

and what it really means is, `First go to the shop
whose details are stored in Shops(4), then go to
Shops(1), then to Shops^i3) ...', and so on. The only
significant information in the schedule is the order
in which to visit the shops, so this is all that needs to
be stored in the new array, Deliveries.

Deliveries() is now an index to the array Shops()
for the purpose of deliveries. When printing this
schedule the computer will use the numbers in the
array Deliveries() to print the names and addresses
from the array Shops() in the correct order. -

In this simple exercise, information — the
shops' names and addresses — has been
manipulated but not changed by the different data
structures imposed upon it. A data structure does
not change the content of the data, but gives
significance by associating it in an ordered way
with other data.

Just as we can re-arrange the array Shops() by
re-indexing it according to the array Deliveries(, so
can we construct other indexes to serve other

purposes. When we discussed databases (see page
124), we noted that certain information could be
selected by reference to pointers included in each
individual record. In this way we can 'emhed' in
each record of the file Shopsi), a pointer that
would indicate its place in the delivery schedule.
We could further extend the record to include, for
instance, a pointer into a file of standing orders -
Atkinsons, for example, always have 48 white
loaves, 12 wholemeal loaves, and so on. The
production department could then run through
the file extracting information relating only to
the number of loaves that they need to hake.

On The Right Track
A juke box contains 200 songs
on 100 record discs. It costs
£2,000, and weighs 80kg
it 761bs). To select any song,
press three keys. Average time
from SELECT to PLAY is 15
seconis. A reel of magnetic
tape on a tape recorder nay
contain the same 200 songs.
The tape recorder costs £500.
and weighs lokgs (22lbs). To
select any song, rewind the
tape, press PLAY, and wait.
Average time from SELECT to
PLAY is 1,500 seconds.

A juke box is a direct access
device: it is fast, fairly
specia li sed, and expensive. A
tape recorder is a sequential
access devise: slew, much less
specialised, but reasonably
cheap. A cassette recorder
connected to a microcomputer
is a sequential access device,
whilea floppy disk drive is a
direct access dev ce, even
though it may be used to store
sequential files

THE HOME CO' 1 PUTt R ('OURSE 205

