
MACHINE CODE/PARTS

ASSEMBLY LINES

In this part of the Machine Code course, we
summarise the main conventions used when
dealing with memory, particularly: to-hi
addressing, tokenisation, and the
importance of context. We also introduce
some differences between Assembly
language programs for the 6502 and Z80
microprocessors.

When you RUN a program, the first thing that the
Operating System does is to inspect the Start of
BASIC Text pointers in order to determine where in
memory the program to be executed resides. But
to do this, the Operating System has to store the
pointers' addresses, so why doesn't the OS simply
store the addresses to which they point?

The main reason is flexibility. The Operating
System, you will remember, is a permanent
program resident in the ROM, and any data that it
contains (such as memory addresses) is similarly
permanent. Suppose that different versions of the
computer are released over a period of time, and
that, although it was convenient to have the Start
of aastc Text at byte2048 in Version 1, it becomes
necessary to relocate it at byte4096 in Version 2.
This will mean that the later machine will not be
able to use the Operating System of the earlier
version because of the different locations of the
BASIC Text Area. Furthermore, new ROMs would
have to be developed for each new version of the
machine, which is expensive; and software written
for one version may not be able to be run on the
other. If, however, the Operating System ROMs
contain only the pointer addresses, then the same
ones can be used for all versions of the machine
and only the pointer contents need be changed
from model to model. The location of the pointers
themselves can remain constant because the
Operating System requires a relatively small block
of memory for workspace and data storage
(typically about 1,000 bytes). Fixing the position
of this block — usually the first four pages of
memory — and designing or re-designing the
system around it does not greatly constrain the
design team. On the other hand, having the
location of, say, the RAsIcText Area fixed (a block
of 3,000 to 40,000 bytes) is a severe restriction.

STANDARD PRACTICE
It is conventional to store addresses in pointers in
what is called to-hi form. If byte43 and byte44, for
example, are to point to the address 7671 (page
29, offset 247), then byte43 will contain 247 (the
offset or to byte of the address), while byte44 will
contain 29 (the page or hi byte of the address).

96 THE HOME COMPUTER ADVANCED COURSE

This may seem confusing but it is convenient for
the microprocessor. It is also logical in that the to
byte of the address is stored in the lo byte of the
pointer, and correspondingly the address hi b yte in
the pointer hi byte.

If we repeat the above example using hex rather
than decimal numbers, the great advantage of the
hexadecimal system can be seen (from now on
addresses and other numbers will always be
written in hex prefixed by `S'). The pointer bytes
are S2B and S2C, and the address to which they
point is S1DF7. Therefore, S2B contains F7 (the
address to byte), while $2C contains $1D (the
address hi byte). Notice that when the address is in
hex the rightmost two hex digits are the to byte,
and the leftmost two digits are the hi byte, which
makes much better sense than using decimal
numbers.

It's worth remarking that the BBC and
Spectrum are unusual in storing program line
numbers as two-byte numbers in hi-lo rather than
lo-hi form. It's true that these are program
parameters rather than byte addresses, but they
work against the usual convention, nonetheless.

Another convention of memory addressing is
that pointers, although they are two-byte
quantities, are often referred to by the address of
the to byte alone. We might say, for example, that
byte43 in the Commodore 64 points to the Start of
BASIC Text. It is understood here, however, that
byte43 and byte44 together are the pointers.

Other things to consider include tokens (see
page 76). The significance of these for machine
code programmers is two-fold; they represent
multi-character English commands (such as PRINT

or RESTORE) by single-byte numerical codes; and
they use offsets as well. A BASIC command is one
word, but executing it is not a single operation for
the Operating System. The command PRINT, for

example, requires that the data to be printed be
found in memory or evaluated, and then sent
character-by-character to the screen in ASCII
code. These various tasks are carried out by a
subroutine of the BASIC interpreter program. When
the interpreter encounters the PRINT token in a
program line it uses the value of that token to
locate and then execute the corresponding
subroutine.

Suppose there are only three commands in our
version of 3Asic: INPUT, PRINT, and STOP; and these
are assigned the tokens: $80, $81, and $82
respectively. Furthermore, let's say that the
interpreter subroutines that execute these
commands start at bytes $0010, SEA97, and SECOO
respectively, and that these three addresses are
stored in to-hi form in the six b ytes from SFA00 to

