Decimal Binary
-7 1001
-6 1010
-5 1011
-4 1100
4 1101
-2 1110
-1 111

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

The most common method of representing
negative numbers in a computer memory location
or register is the form known as two’s complement
(see page 328). To obtain the two’s complement of

a binary number, we invert all the digits (change all
the zeros to ones, and vice versa), and add one to
the number. Thus, the two’s complement of 0101
it 1011.

But how is this used to perform mathematics
involving signed numbers? First of all, let’s
consider the range of numbers that can be
represented: an eight-bit register can hold only
256 different bit patterns, which can be used to
represent positive numbers in the range 0 to 255 or
negative and positive numbers in the range -128 to
127. (A 16-bit register can hold values from 0 to
65535 or-32768 to 32767.) We give a table in the
margin that shows how a four-bit binary
representation is made for the decimal values from
=T to'7.

If you look at the table, you will notice that
the negative numbers all have a one in the most
significant (leftmost) bit position. Similarly, all
the positive numbers have a zero in the most
significant bit position.

As you can see from inspecting this four-bit
table, we can define some basic properties for
signed mathematics based on two’s complement:

® The two’s complement of a negative number
gives its positive equivalent, and vice versa.

® The most significant bit is always zero for a
positive number, and one for a negative number.
This makes recognising whether a number is
positive or negative very easy.

® The two’s complement of zero is zero (1111 plus
1).

® Addition and subtraction can be carried out in
the usual way, and any given answer will have the
correct sign.

You might like to try a few simple addition and
subtraction sums to verify the legitimacy of the last
property. Multiplication, however, is more
difficult when using signed numbers. The MUL
instruction that we used in the BCD-to-Binary
program at the start of this instalment treats the
contents of the A and B registers as unsigned
numbers. If we want to multiply two signed
numbers then we must program it ourselves.

Anybody who has done any programming will
realise that we are extremely limited in what we
can do using the simple ‘linear’ programs that we
have so far used in this course. We can only begin
to do useful things by employing one of the basic
forms of control structure:

® Selection: in which we choose between two
different courses of action (like the IF statement in
BASIC)

® Repetition: in which we repeat a sequence of
operations:

578 THE HOME COMPUTER ADVANCED COURSE

1) while a certain condition remains true (the

WHILE . . . WEND structure);

2)until a certain condition becomes true
(REPEAT . . . UNTIL); or

3) a certain number of times (FOR . . . NEXT).

All of these structures depend on the ability to test
a condition to see whether it is true or false, the
most common sort of condition being whether a
variable has a certain value or not. In Assembly
ianguage, we need to use these structures, and will
therefore need to be able to test the values in
registers. We can usually test directly for only two
possibilities (whether a value is zero or not, and
whether it is positive or negative). With extra
instructions, however, it is possible to carry out
other sorts of test.

CONDITION CODE REGISTER

These conditions are made available by using the
condition code (CC) register, which we briefly
mentioned earlier in the course (see page 537).
This is an eight-bit register, but unlike the other
6809 registers, we are not interested in the value
stored there. Rather, we are concerned with the
state (1 or 0) of each of the eight bits individually.
Five of the eight bits are devoted to conditions of
the type we have been discussing, the other three
are concerned with the handling of interrupts
(which we will examine in detail later in the
course). One of the five, H (the Half carry flag), is
almost solely concerned with BCD arithmetic,
and doesn’t concern us at present. The remaining
four, which are important at this stage, are:

® C: The Carry flag, which holds the carry digit (or
borrow in the case of a subtraction) from the most
significant bit after an arithmetic operation. It also
has a useful function when we want to shift the
contents of an accumulator along by one bit; some
of the shift operations put the bit that is lost off the
end into C. This bit, for example, could be used to
test whether a number is odd or even by having the
least significant bit shifted into it and tested. Thisis
bit O (the least significant bit) in CC.

® V. The oVerflow flag, which is set to one
whenever the result of an arithmetic operation is
too large for the register that is supposed to
contain it. This is bit 1 in CC.

® Z: The Zero flag, which is set to one when the
contents of a register are zero. This is bit 2 in CC.

® N: The Negative flag, which is a copy of the most
significant bit (the sign bit) of a number in a
register; in other words it is set to one if the number
is negative. This is bit 3 in CC.

It is one of the most difficult aspects of Assembly
language programming to keep track of the state
of the flags. Not every instruction will set the flags,
and some flags are set depending on the contents
of the accumulator while others can depend on
other registers as well. The safest procedure is to
test only on the values in an accumulator, and to




