

3) If the three switches are X,Y and Z and the hall light is P then the truth table is:

INPUTS			OUTPUTS	
X	Y	Z	Р	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

 $\begin{array}{ll} \mathsf{P}=\overline{X},\overline{Y},Z+\overline{X},Y,\overline{Z}+X,\overline{Y},Z+X,Y,Z\\ =&Z.(\overline{X},\overline{Y}+X,Y)+\overline{Z}.(\overline{X},Y+X,\overline{Y}) & (\text{distributive law})\\ =&Z.(\overline{X},\overline{Y}+\overline{X},\overline{Y})+\overline{Z}.(\overline{X},Y+X,\overline{Y}) & (\text{de Morgan}) \end{array}$

dependent on only one variable, not two, so the question does not differentiate between liars and truth-tellers. However, if we ask the question, "Do pigs have wings?" then the table is:

		POSSIBLE ANSWER	
		YES	NO
POSSIBLE	LIAR	1	0
IDENTITY OF Respondent	TRUTH TELLER	0	1

and this is the truth table for the function X.Y+X.Y, which is also an Exclusive-OR table. This question enables us to identify the respondent.

