Answers to Exercise 3

(a) $\quad \mathrm{A} .(\overline{\mathrm{A}}+\overline{\mathrm{B}})$
$=A \cdot \bar{A}+A \cdot \bar{B}$.
$=A . \bar{B}$
(distributive law)
($\mathrm{A} . \overline{\mathrm{A}}=0$)
b) $X+Y \cdot(X+Y)+X \cdot(\bar{X}+Y)$
$=X+Y+X .(X+Y)$
$=X+Y+X . Y$
$=X+Y$
c) $P \cdot Q+P \cdot Q+P \cdot Q$
$=P \cdot Q+\bar{P} \cdot(Q+\bar{Q})$
$=P \cdot Q+\bar{P}$
$=\bar{P}+Q$
d) $\overline{X+Y, Z+Z . Y}$
$=\bar{X} . \bar{Y} \cdot \bar{Z} \cdot \overline{Z . Y}$
$=X . Y . Z .(Z+Y)$
$=X . Y . Z . Z+X . Y . Z . Y$
$=X . Y . Z+0$
$=X . Y . Z$
(relation 5)
(relation 6)
(absorption)
(distributive law) ($\mathrm{Q}+\mathrm{Q}=1$)
(dual of relation 6)
(de Morgan)
($\overline{\mathrm{X}}=\mathrm{X}$, de Morgan) (distributive law)
(Z.Z=Z, Y.Y=0)
3) If the three switches are X, Y and Z and the hall light is P . then the truth table is:

INPUTS			OUTPUTS
X	Y	Z	\mathbf{P}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$P=X . Y . Z+X . Y . Z+X . Y . Z+X . Y . Z$
$=Z .(X, Y+X . Y)+Z .(X, Y+X . Y) \quad$ (distributive law)
$=Z .(\overline{X . Y+X . Y})+Z .(X . Y+X . Y) \quad$ (de Morgan)
2) The truth table for the alarm system is:

IIPUTS			
A OUTPUTS			
0	B	S	Alarm
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Alarm $=\bar{A} \cdot B \cdot S+A \cdot B \cdot S+A \cdot B \cdot S$

$=\bar{A} \cdot B \cdot S+A \cdot S \cdot(\bar{B}+B)$	
(distributive law)	
$=\bar{A} \cdot B \cdot S+A \cdot S$	$(\bar{B}+B=1)$
$=S .(A+\bar{A} \cdot B)$	(distributive law)
$=S .(A+B)$	(dual of relation 6)

4) The given truth table shows that the question "Do you tell the truth?" is of little use to us because both a liar and a truth-teller will give the same reply. The truth table has the same form as the function $X . Y+\bar{X} . Y$, which simplifies to Y. That is, the answer is dependent on only one variable, not two, so the question does not differentiate between liars and truth-tellers. However, if we ask the question, "Do pigs have wings?" then the table is:

		POSSIBLE ANSWER	
		YES	NO
	UAR	1	0
POSSIBLE IDENTITY OF RESPONDENT	TRUTH TELLER	0	1

and this is the truth table for the function $X . Y+\bar{X} . Y$, which is also an Exclusive-OR table. This question enables us to identify the respondent.

