
Record count

Record count + 1

ord count

for
, 6Prds

a ceat I are
t for . tiny

insert ecord,
weft. wn one

TO delete, the
hYlrfvdd up ,

rwritins the record to be
Scarded More advan

"i; '
14I

P
Ssea 11

01
) tO 

the
011(Os in a

i.time-
gifitte 4444 I .1 I.oving

Delete this record

Records III

by data. For example, colour codes 1,2, and 3 for
black, red and green, or date codes such as 841011
for 11 October 1984. Coding systems must remain
internal to the system, however, and programs
should convert the codes back into an easily
comprehensible form once a field is displayed or
entered.

There are two further considerations to bear in
mind when determining record lengths. Most
systems place a limit on the maximum length
available. This can vary from 128 bytes to as much
as 2,048 bytes. Additionally, it is often more
efficient to choose a length that is a multiple or
factor of the sector size — figures such as 64, 128,
256 or 512 are commonly used. This will prevent
individual records from being split over more than
one sector and therefore reduces the number of
disk calls that need to be made.

Random files are generally much easier to
handle than serial files. In both systems, you need
to keep an up-to-date count of the number of
records in a file and quite often the first record in a
random access file (often record number 0) is used
to store this information and other relevant
information such as the file creation date. The
rigid field and record structure would be discarded
for this record.

A record can be amended by reading it in,
changing it and then writing it back to its location.
The record is retrieved by number. Obviously, it is
unreasonable to ask a user to remember which
record is which by number. So a whole variety of
techniques exist for searching and locating
particular records, similar in concept to techniques
used to search BASIC arrays. Often, one particular
field, perhaps a name field, is used as a key to the
file. The computer reads in the key field and builds
up an index that identifies where various names
are stored.

Unindexed random files are often searched
record by record just like sequential files.
However, if the records are sorted on the key field,
fast search methods can be used. Suppose, for
example, we wanted to look up 'Jones' in a file
sorted by name. We begin by fetching the middle
record and discover that the name is 'Phillips'.
'Jones' is before this alphabetically so we can rule
out everything after this record. Our next guess is
then a record halfway through the first half of the
file. The name might be 'Hearst', in which case we
need to go forward again and so on. Such
techniques can be very sophisticated, and many
programs improve performance by keeping large
numbers of the most frequently used records in
RAM so that they are quickly available. As a
result, records can be located and stored within
very large files at a high speed.

Deleting and inserting new records can be
comparatively slow. The crudest method to delete
a record is to copy the record immediately
following it into its space, thus overwriting the
information in it. Every subsequent record is then
copied up one position and finally the record
count is reduced by one. In a similar way, a new

record can be inserted at any point by moving the
last record one number further on and then
copying all the records before it and after the
number of the new record one space further down.
This creates a one-record gap where the new
record can be written.

Neither of these techniques is fast, although
they are more efficient than similar operations
with sequential files. However, insertions and
deletions can be made far more quickly if the file
has a separate index. When a record is deleted, it is
marked as such in the index. The data itself is left
unchanged. As new records are added they can be
slotted into unused or deleted records and the
index updated.

There are two final advantages to consider in
the random file system. Firstly, while it is certainly
quicker to read and write groups of records
together, files can get out of order. Most programs
therefore offer a tidy-up facility that sorts records
into a logical order and discards deleted records.
Secondly, the system of merely marking deleted
records as deleted provides a useful safety net, as it
is easy to retrieve these records if required. This
safety net will operate up to the point when
deleted records are overwritten or discarded by a
tidy-up program.

THE HOME COMPUTER ADVANCED COURSE 245


