FINE TUNING

Our course on program design has so far
concentrated on ‘structured’ programming
methods. Using the techniques we have
suggested will make your programs easier to
design and debug, but will do nothing to
make them run any faster. Here we consider
ways to increase program execution speed.

Structured programming and good program
layout are techniques that make programs easier to
use, but do not improve program efficiency. To
make programs run faster and use less memory
space, it is often necessary to sacrifice clarity in a
program’s design. So we should bear in mind,
when ‘tuning up’ a piece of code, that almost
anything that is done to make it faster will
invariably make it more difficult to read,
understand and debug.

The inherent slowness of interpreted languages
like BAsic means that there will be times when
programs will run at an unacceptable pace and
must be speeded up. The most efficient way of
speeding up a BAsic program is to compile it.
However, very few micros support a true BASIC
compiler — there are disk- and cassette-based
compilers on the market, but most of them
support only integer Basic, and may require
special formatting of your program before
compilation. Compiling is a slow process,
especially during program development, and
especially when the system is cassette-based. The
compiler will occupy user memory, and the more
comprehensive its facilities, the more RAM it will
take from the user program area. In general on

Softek FP
Softek!s,
Combined FP and IS,
12/13 Henrietta St,
London WC2.

01-240 1422

596 THE HOME COMPUTER ADVANCED COURSE

home micros, compiling is recommended only for
fully tested and debugged programs.

File accesses slow programs down more than
any other single cause. In a program that
frequently reads from and writes to disk or tape (a
database program, say) delays are inevitable.
Access to a record in a random access file on a
floppy disk takes an average of about a quarter of a
second. Access to data in serial files takes longer
(and varies with the length of the file) and tape
accesses are considerably longer. If these delays
are causing problems, it may be possible to reduce
the number of accesses by reading in more data at
once and storing it in RAM, and by ‘saving up’
updates to files until the end of the session.
Interactive programs often cause problems
because the user is left staring at a screen for
several seconds. A partial solution here is to re-
organise the program so that files are read and
written while the user is busy doing something else
(reading a screenful of instructions, for instance).

Another cause of slowness is real arithmetic.
Real numbers are ones with decimal places
(integers are whole numbers). Because of the
decimal part, fetching a real number from memory
and performing an arithmetical operation on it
requires many more machine cycles than doing the
same for an integer. In programs with a lot of
arithmetic, it pays to replace all the variables
involved with integer variables (e.g. SUM should be
replaced by SUM%). Savings of around 20 per cent
can be achieved for even moderately numerical
programs and ‘number-crunching’ applications
stand to gain by as much as 50 per cent.

Designing a faster algorithm is one of the best
ways of speeding a program up. Some sources of
algorithms have already been recommended in
this course. Try these, and be on the lookout for
those published in computer magazines.
Otherwise, devising algorithms is a matter of
creativity and insight. Basics usually have a wealth
of inbuilt functions (such as INSTR, SGN, LOG, and
so on) that are very fast. This speed is a result of
their being written in machine code and using the
best algorithms available. It is often worth
checking the manual again to see what inbuilt
functions are offered before coding your own
version. User-defined functions, implemented
with the command DEF FN, also run quickly. This
command is most useful in programs with
repeated calculations or a repeated sequence of
string manipulations, where it can replace a
subroutine call, which is much slower.

Writing routines in machine code generally
makes them run faster. This is because interpreted
languages translate program lines into machine



