FORTH

Forti was invented by astronomer Charles
Moore in 1972 when he became dissatisfied with
FORTRAN as a language in which to write telescope
control programs. The specialised functions that
he needed were difficult to write in FORTRAN
because its structure and processes. were too

strongly oriented towards that language’s
scientific/ mathematical purposes. Accordingly,
he designed rorTH as a dictionary of primitives—
the elementary functions of the language — and an
editor/compiler/interpreter.

The editor is used to define new functions as
expressions (or ‘subroutines’) created from the
existing dictionary; the new functions are named
and compiled, and thus added to the language. A
function can be executed at any time through the
interpreter by simply issuing its name as a
command. ForrH treats all of user memory as one
big Last In First Out (LIFO) stack, while program
memory is a series of independent stacks (one per
function) of machine code subroutine addresses.
A function is executed by jumping to the first
address on its program stack, popping any needed
values off the main stack, pushing any results back
onto the stack, and exiting to the next stacked
address, until execution is complete. Arithmetic
expressions are, therefore, written in reverse
Polish — or postfix — notation (operands are
grouped together and followed by their operators;
thus A+B*C is written B C A * +) because this is a
stacked-oriented notation.

Programming in rorTH, then, really consists of
developing a customised version of the language
to suit each application. The language’s chief
virtues are its ‘extensibility’ and speed of
operation , Because of its extensibility and because
it brings the user closer to the computer’s
operations than is normal with high-level
languages, rortH has been acclaimed as a
replacement for sasic but, although it is available
in various versions for most micros, only one —
the now-defunct Jupiter Ace — has been
manufactured with rorTH rather than Basic as its
resident language.

FORTRAN

Developed by IBM in 1956, rorrran (derived
from FORmula TRANslation) was the first
commercially available high-level language. It had

two main purposes: to demonstrate that high-
level, quasi-English programming languages
could be compiled quickly and efficiently, and to
make computers more generally accessible to
scientists and engineers who might be prepared to
learn a language rather like the algebraic
expressions in which they formulated their ideas,
but who had neither the time nor the patience to
learn machine code. In both of these aims FORTRAN
has been enormously successful; it is still the most
widely used of the high-level languages, and a new
version is due in the late 1980s. Several versions
are also available for microcomputers.

Animportant early development was the ability
to create system libraries of independently-
compiled rorRTRAN subroutines: all mainframe
systems have such libraries, and so important a
resource are they that other languages — such as
pAsCAL — are configured so that they can call
FORTRAN routines from the libraries.

Fortran's legacy is the group of languages
descending from it—chiefly ALGoL, pascar and
Basic—but its true historical significance is
probably that it enabled computers to move out of
university computing laboratories and into the
classrooms and workshops, where they could
become taken for granted as everyday scientific
equipment. From there it was a short step into
offices and homes. rForTRAN brought computing
within the reach of the non-specialist, and was
perhaps, therefore, the first step on the road to
user-friendliness.

FOURTH GENERATION

A generation in the development of computers
seems to span about ten years, and begins with the
development of an expensive new technology
which is commonplace by the end of that period.
The first generation began in the late 1940s with
the first stored-program thermionic valve
machines; the second generation machines
appeared in the late 1950s and used discrete
transistor logic; the third generation — typified by
the IBM 360 — began in the early 1960s with
integrated families of machines and
comprehensive operating systems; and the fourth
generation appeared in the early 1970s with the
introduction of Large Scale and Very Large Scale
Integration (LSI and VLSI) chip circuitry. As
such, it includes mainframe, mini and
microcomputers. Micros have themselves gone
through several stages of development to arrive in
the middle 1980s as credible small-scale
computers, supporting fourth generation features
such as large memories (one megabyte or more),
networking, multi-tasking and integrated
software.

The fifth generation is expected to appear in the
late 1980s. Its characteristic features are likely to
be natural-language programming, speech
recognition and generation, and a degree of
artificial intelligence in its operating systems and
applications software; it will probably be
developed in Japan.

THE HOME COMPUTER ADVANCED COURSE 649

