
One of the conceptual difficulties that most
newcomers experience with machine code is that
the programs can take various forms. Any data
stored in computer memory ultimately takes the
form of eight-bit binary numbers. However, when
these are listed out on paper, they occupy a lot of
space, are difficult to read and remember, and are
prone to typing mistakes. So instead we usually
make use of hexadecimal numbers. This has the

Addressing Modes
Among the most powerful Immediate Mode
concepts n machine code LDA #S01 will load the actual
programming are the LDA # $01 value 01 (hex) into the
addressing modes — the accumulator
different ways o' retrieving
data

LDA $23A1 Direct Mode
LDA$23A1 will load the

23AO contents of the byte of memory

2SA1 05
at loeation S23A1 into the
accumulator

23A2
05

LDA $23A1,X
Indexed Mode
LDA $23A1,X will load into the
accumulator the contents of
the byte with the hexadecimal
address computed by adding
the value ii the X register to

• $23,41. Thus if X contains $04.
the conterts of location S23A5
will ae loafed

– 09

Indirect Mode
LDA (S23A1) wi I load into the
accumula:r the contents of
the byte o memory whose
address is specified by the
con,ents of locations S23A1
and S23A2, in low-high form.
Here is an examale: let's say
that S23A1 contains $OF and
S23A2 coitains S68. These
two specity the address S680F,
and location S680F might
con:ain $07, which is the value
Tina ly loaded in:o the
accumulator

07

04 X Register

LDA ($23A1)

2"A1

Passwords To Computing

n

Assembly
Continuing our introduction to machine code, we look at the many
different forms in which programs can be expressed — from binary
to Assembly language

advantage that the contents of an y byte can be
expressed as a two-digit number, and any address
in the computer's memory range (0 to 65535 in
decimal) can be represented by four digits.

When we write a hex number on paper we
usually precede it with a S sign to distinguish it
from a decimal number, although the sign does
not feature in the computer's memory when the
program has been entered. Secondly, when an
opcode has a two-byte operand (e.g. LDA , S3F80)
the two bytes are entered into the machine in the
opposite order — i.e. the low byte followed by the
high byte. In the example given, therefore, the
three bytes would be AD (the hex representation of
the LDA opcode in 6502 language) followed by 80,
followed by 3F. This makes things easier for the
processor, but it can be confusing for the user.

Usually a machine code program is printed as a
`hex dump' — a long list of two-digit hexadecimal
values. In addition, a starting address will be given
(either in hex or decimal) and the first hex value
must be loaded into this location, the second into
the next location, and so on. Loading can be
achieved by means of the BASIC POKE command. If
the starting address is $1000 (4096 in decimal) and
the hex dump is:

AD (173 in decimal)
80 (128 in decimal)
3F (63 in decimal)

the program can be loaded with the three Baste

statements:

POKE 4C96,173
POKE 4097,128
POKE 4098,63

Note how we have to convert all the values from
hex to decimal before they can be used in the
POKE statement — inside the machine they will be
stored in binary.

For longer hex dumps it is normal to use a short
BASIC program called a `machine code loader'.
This asks for the start address and then the hex
values. As each is entered, the short BASIC routine
converts the hex value to decimal, and POKES it
into the next location. Alternatively, the hex
dump can be READ by the. program from DATA
statements.

Once the machine code has been loaded, the
BASIC loader program can be dispensed with. It's
therefore important to load the machine code
somewhere in memory where it won't be
'trampled over' by the Baste program, nor be

464 THE HOME COMPUTER COURSE

