
One of the conceptual difficulties that most
newcomers experience with machine code is that
the programs can take various forms. Any data
stored in computer memory ultimately takes the
form of eight-bit binary numbers. However, when
these are listed out on paper, they occupy a lot of
space, are difficult to read and remember, and are
prone to typing mistakes. So instead we usually
make use of hexadecimal numbers. This has the
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Assembly 
Continuing our introduction to machine code, we look at the many
different forms in which programs can be expressed — from binary
to Assembly language

advantage that the contents of an y byte can be
expressed as a two-digit number, and any address
in the computer's memory range (0 to 65535 in
decimal) can be represented by four digits.

When we write a hex number on paper we
usually precede it with a S sign to distinguish it
from a decimal number, although the sign does
not feature in the computer's memory when the
program has been entered. Secondly, when an
opcode has a two-byte operand (e.g. LDA , S3F80)
the two bytes are entered into the machine in the
opposite order — i.e. the low byte followed by the
high byte. In the example given, therefore, the
three bytes would be AD (the hex representation of
the LDA opcode in 6502 language) followed by 80,
followed by 3F. This makes things easier for the
processor, but it can be confusing for the user.

Usually a machine code program is printed as a
`hex dump' — a long list of two-digit hexadecimal
values. In addition, a starting address will be given
(either in hex or decimal) and the first hex value
must be loaded into this location, the second into
the next location, and so on. Loading can be
achieved by means of the BASIC POKE command. If
the starting address is $1000 (4096 in decimal) and
the hex dump is:

AD (173 in decimal)
80 (128 in decimal)
3F (63 in decimal)

the program can be loaded with the three Baste

statements:

POKE 4C96,173
POKE 4097,128
POKE 4098,63

Note how we have to convert all the values from
hex to decimal before they can be used in the
POKE statement — inside the machine they will be
stored in binary.

For longer hex dumps it is normal to use a short
BASIC program called a `machine code loader'.
This asks for the start address and then the hex
values. As each is entered, the short BASIC routine
converts the hex value to decimal, and POKES it
into the next location. Alternatively, the hex
dump can be READ by the. program from DATA
statements.

Once the machine code has been loaded, the
BASIC loader program can be dispensed with. It's
therefore important to load the machine code
somewhere in memory where it won't be
'trampled over' by the Baste program, nor be
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