
BasicProgramming

Leaving It To Chance
Continuing our look at Basic functions, we come to RND, which
produces random (or nearly random) numbers for use in games or
statistical programs

Now that we have seen how several of BASIC's

functions work we shall look at one of the most
commonly used — the RND function. FIND is used
to generate random numbers. It is also used in
games whenever there is an element of chance.

Unfortunately, AND is one of the most variable
`words' in BASIC. Our description of it may differ
from the way it is implemented in your home
micro. Let's, therefore, clarify the differences
between BASIC used in the Basic Programming
course and your BASIC.

Most of our programs are based on Microsoft
BASIC (or MBASIC). Microsoft is an American
company and their BASIC was one of the first made
widely available. BASIC is a language with no
official standard, but Microsoft's version is as near
to a standard as there is. Many other versions are
modelled on Microsoft's, and the company has
been commissioncd to produce versions for
several popular computers.

The chief difference between MBASIC and most
of the more recent versions is that home
computers now have powerful graphics
capabilities that were not available when MBASIC

was developed. Other versions of BASIC generally
include a number of graphics commands and
statements. To get the most from your computer,
you will want to use its graphics capabilities to the
full, and this will require a careful study of the
owner's manual.

Of the various BASICS supplied with popular
home computers, Sinclair BASIC (used in the ZX81
and Spectrum) and BBC BASIC probably differ
most from MBASIC. Texas Instruments' version
(used in the TI99/4A) also has a number of
significant differences. As far as possible, we point
out how to modify our programs in the 'Basic
Flavours' boxes and you should refer to these if
you have any problems running the programs.

As mentioned previously, the RND function
differs from version to version. Check in your
BASIC manual to see how it has been implemented
in your version. We are illustrating its use in a very
simple dice game. As with previous programs we
have done most of the work in subroutines. This
technique has the advantage of making the
programs more readable, easier to write and easier
to debug.

The main program starts with the statement

172 THE HOME COMPUTER COURSE

RAN D 0 PSI IZE in line 20. Most, but not all, versions of
BASIC need this statement to `reseed' the RND

function. It is actually quite hard to get computers
to produce genuinely random numbers. Without
this reseeding operation, the same sequence of
supposedly random numbers would be produced
each time by the RND function. Line 50 then calls a
subroutine that uses RND to assign a random
number to the variable D. The form we have used
is:

320 LET D = INT(10 * RND)

This is the line most likely to need changing when
you enter the program. Details of how different
versions of RND work are given in `Basic Flavours',
so let's see what's happening in this Microsoft
BASIC. The RND uses an expression (in brackets, as
is usual with functions) as an option to alter slightly
the sequence of numbers generated. With no
expression — for example LET A = RND — the value
of A will be a number between 0 and 1. We do not
want a number smaller than 1 so we multiply the
number by 10. This can be done like this: LET A =10

RND. If, for the sake of argument, RND had
returned the value 0.125455, the value of A would
now be 1.25455.

To eliminate the fractional part of the number
and retain only the integer portion, we use the INT

(integer) function like this: LET A = INT(10 * RPJD).

Some versions of BASIC allow the upper limit of the
random numbers generated to be specified in the
expression used in the brackets after RND. For
example, Dragon BASIC will print a whole number
in the range 1 to 6 in response to: PRINT RND(6).

Since our Microsoft BASIC cannot do this, we
check to see if the numbers returned are greater
than 6 or less than 1 as such numbers are oto use
in a dice game. This is done in lines 330 an 340:

330 IF D > 6 THEN GOTO 320
340 IF D <1 THEN GOTO 320

If D is outside the limits 1 to 6. the GOTDs make the
program jump back and try again.

Having chosen a random value for D between 1
and 6, the dice throw subroutine RETURNS to the
main program. This prints the message YOUR

SCORE IS A, followed by a picture of a dice. Notice
how the appropriate picture of a side is selected. It
is done in the SELECT subroutine. For example, if
the dice (and therefore D) is a 1, line 410 calls the
subroutine starting at line 530 thus:

410 IF D =1 THEN GOSUB 530


