
CHANGE BORDER COLOUR

CHANGE SCREEN COLOUR

CHANGE TEXT COLOUR

1440-4-

A la Carte
The menu can be styled to suit a
particular application, but this
probably means that it can be
used for one purpose only. If
that purpose is common to
many programs, however —
such as changing the screen-
border colour combinations —
then the routine can be added to
the programmer's utility library

Yours To Command
Command-driven software
usually benefits from the
addition of menu-like prompts
or status displays: the
word processor program,
Vizawrite 64, is command-
driven in philosophy — users
must remember the command
key inputs or consult the manual
— but well supplied with helpful
prompts

 

Two Into Three
There are usually many ways of
solving the same problem —
these displays show different
ways of allowing the user to
change the screen, border and
text colours on a Commodore
64

to wait for an input. The second is to 'parse' this
input — the interpreter must separate the input
line into its functional units. The third task is to
interpret the command by preparing the
appropriate subroutine call. (What is the routine's
address? Are there parameters to be passed?)
Finally, it must actually call the routine to be
executed. When control returns, the interpreter
goes back to its first job — waiting!

The format of a command may be extremely
elaborate, and some command languages are
similar to a simplified form of English. An
example of a command language is the Unix shell,
where the typical command format is:

Command + optional parameter list
e.g. L
or L-1

Here, the Unix command L lists a file directory,
while L -1 (where -1 is an optional parameter) lists
a file directory in 'long' format.

The parser must be able to recognise the various
parts of the command line. Unix keeps things
simple (in most cases) by taking the first word as
the command and recognising parameters by a
preceding minus sign. Command language
parameters are not for the use of the command
interpreter itself, but are required by the
subroutines that the interpreter calls. Routines
used in the command system should ideally adopt
a standard format for input parameters. If this is
done, the command interpreter can pass the
parameters in the form in which they were entered
(as strings, perhaps).

It is obviously much easier to create a command
interpreter than to write a menu system.
Experienced users tend to prefer command
systems, as these are faster and more flexible than
menu-driven programs. Most operating systems
are command driven, which is unfortunate for
novice users as such systems provide no
signposting facilities and the on-line help routines
(if there are any) require some knowledge of the
system. In addition, the sheer number of
commands and optional parameters in a typical
command system means that even those
reasonably familiar with the system will require
help facilities or need to consult the operating
manual frequently.

Beginners hate commands and experts hate
menus. This problem is virtually insoluble,
although some hybrid systems exist that can be
quite effective. For example, the Wordstar word
processing program is basically a command-
driven system, but it can appear to the user to be a
menu system. The commands are control codes
(some with parameters) and the user runs the
system entirely with these. The menus that appear
on the screen use these commands as mnemonics
for selecting options so that, as the novice uses the
menus to run the program, the commands are
learnt at the same time. The help level may be set
to permit the menus to be dispensed with once the
user is sufficiently proficient to find them a
nuisance. The Wordstar menu system is only two
levels deep, however; this approach would be
more difficult to implement with more complex
systems.

THE HOME COMPUTER ADVANCED COURSE 557


