
IDA — l.oaD Accumulator

FDA
Transfers the contests of a
s ngle memory location (Dyte)
into the internal accumulator
register

STA STA — STore Accumulator
Performs the opposite process
to LDA

ADC —ADd with Carry

ADC
ids the contents of a memory
location to the current contents
of the accumulator, creating a
carry bit if necessary

SBC
 SBC —

the
etract with Carty

This is th inverse functicn of
ADC

JMP —JUMP

jMp
Transfers program operation to
a new locatioi. This is similar in
operation to a BASIC GOTO
statement

Opcodes
These are just a few of the
opcodes (types of operation or
instructior) thata typical
microprocessor can execute

ords To Computing

indicates whether a read or write is to be
performed), then the selected byte will place its
contents on the data bus, in the form of apattern of
eight bits. Similarly, the CPU can write a pattern of
eight bits into any chosen location, The CPU has
no knowledge of which parts of memory are ROM
and RAM, so getting the addresses right is another
crucial responsibility of the programmer.

Inside the microprocessor, there are perhaps
half a dozen `registers', which are like individual
memory locations and are used for storing
temporary results and performing the logic and
binary arithmetic functions. Most of these
registers are equivalent to one byte of memory,
though some are 16 bits wide. One of the latter
type is called the Program Counter (PC) register,
and this contains the address in memory of the
machine code instruction that is currently being
performed. You can think of this as being similar
to the line number in a BASIC program.

Another of the most important registers (but
this time just eight bits wide) is the 'accumulator'.
As the name suggests, this register can accumulate
totals (that is to say, bytes can be added to it or
subtracted from it), and indeed this is usually the
only register that can perform any kind of
arithmetic. So, a very simple machine code
program might be specified as follows:

1) Load the accumulator with the contents of
memory location S3F80. Addresses in machine
code are usually written in hexadecimal (see page
179). Hexadecimal numbers are indicated in
writing by prefixing a special sign, usually a S.

2) Add to the accumulator the contents of
memory location S3F81, allowing for the fact that
the result may be larger than can be stored in a
single byte — in which case there will be a `carry
bit' as well.

3) Store the new contents of the accumulator
(i.e. the result) in memory location $0493.

Each of these constitutes a machine code
instruction, and the program would normally be
written thus:

letter mnemonics, such as LDA, ADC and STA.
Each of the three operands shown consists of a

hex number in the range $0000 to SFFFF, and uses
up two bytes of program memory space. However,
some operands are just one byte long, and some
opcodes don't have operands at all. The short
program that we have given would therefore
occupy a total of only nine bytes — not including
the three memory locations ($3F80, S3F81, and
$0493) that the program will operate on. For this
trivial exercise, the following BASIC program would
achieve exactly the same effect, but would occupy
nearly 50 bytes and perform the operation at least
a hundred times slower, because of all the time
taken by the interpreter to translate it:

10 A = PEEK (16256)
20 A =A + PEEK (16257)
30 POKE 1171,A

N.B. The locations used by this particular program
may not be suitable for your machine.

In the next instalment of THE HOME COMPUTER

CouRSE, we'll look at how machine code is entered
into a home computer and run, and the different
ways in which machine code is expressed.

LDA $3F80 (LoaD Accumulator)
ADC S3F81 (ADd with Carry)
STA $0493 (STore Accumulator)

The comments in brackets, like BASIC REMark
statements, have no effect. The first entry on each
line is called the `opcode', and this indicates the
nature of the operation. The second column
contains the `operand' — the details of, or
whereabouts of, the data that is to be operated on.
A microprocessor will usually feature several
dozen possible opcodes (that is to say, it can
perform several dozen types of simple operation),
and each opcode will occupy just one byte of
memory when it has been entered into the
machine.

An opcode can therefore by specified as a
number in the range 0-255 (or, more properly, in
the hex range $00 to $FF). However, while a
program is being developed, it is more usual to
make the listing more readable by using three

THE HOME COMPUTER COURSE 449

