
Program Two
EQU
EQU

EQU
EQU
EQU
EQU
EQU
ORG
CLR

LDX

FINISH

SE001
$E000
$2000

13
$100

$51
$50
$1000
FLAG

#BUFFER

PIACR
PIADR
INTRP

CR
BUFFER

BUFPTR
FLAG

SIX

CLR
LDA
STA
LDA
STA
ANDCC

RTS
ORG
LDX
LDA
STA
LDB

STX
CM PA
BNE
INC

RTI

BUFPTR
PIACR

SFF
PIADR

°/000000101
PIACR
%11101111

INTRP

BUFPTR
,X+
PIADR
PIADR

BUFPTR
#CR

FINISH
FLAG

PIA control register
PIA data register

Carriage return
Address of buffer
Buffer pointer
End-of-line flag
Subroutine to set everything up
Clear end-of-line flag
Initialise buffer pointer
to start of buffer

Address data direction register
Set all lines to output

Enable PIA interrupts

Enable IRO

Interrupt service routine
Buffer pointer
Get next character from buffer
Print it
Clear interrupt
Incremented buffer pointer
Was it end-of-line?
Skip it not end-of-line
Else set flag

PIA control register
PIA data register

Subroutine to initialise clock
Clear clock locations

Enable PIA interrupts

Enable IRQ
Wait for first increment

6809 CODE/MACHINE CODE !KJ-

1 II

4

vector, the address to which control is transferred
on power-up or a hardware reset; this is usually
the start address of the ROM monitor.
Furthermore, the two bytes at $FFF0 and $ FFF1 are
reserved by Motorola for possible future use.

Information about interrupts is contained in
three bits of the condition code register (CC): bit
4 (I), bit 6 (F) and bit 7 (E). Setting th6 I bit to one
masks the IR

O
 interrupt, setting the F bit masks

MG. The E bit is used by the processor to
differentiate between IF

-
TO or NMI, and MO: if E

gets set to one then there has been an IRQ or NMI,
if E gets set to zero then an FIRQ has occurred.

When an interrupt is received, it is treated in a
similar way to a subroutine call: the contents of
some or all of the registers are stacked so that
control can be returned to the same point in the
program currently being executed. The interrupt
service routine ends with an RTI instruction
(similar to an RTS), which unstacks the registers
and returns control to the original program.

The actual difference between the WC and the
other two interrupts is that FIR Q stacks the
program counter (PC) and the condition code
(CC) registers only, and is therefore much faster
in operation than the other two. The interrupt
service routine, however, must restore any
registers that it uses, so this type of interrupt
should not be used for routines that use more than
just one or two registers.We can see now where
the E bit is used because the same RTI instruction
is used to terminate 1170 and FIRQ routines, but the
processor must determine which registers need
unstacking. The sequence of events when an
interrupt occurs is:

1)The current instruction is executed.
2)The I bit is set, disabling other IC interrupts. If
the interrupt was a WO or a NMI then bit F is also
set to disable FIRQ. SW12 and SW13 do not mask
other interrupts, but SW1 does.
3)On an FIRQ bit E is cleared to zero, otherwise it
is set to one.
4)The vector in the appropriate memory
locations is loaded into PC and execution
continues from that address.

Our first program looks at another good use
for interrupts; namely maintaining a real-time
clock. We shall assume that some timing device,
which could be a special purpose chip like the
6840 interval timer or a division of the system
clock or a modification of the 50Hz mains, is
connected to a PIA at $5000. The first subroutine
will enable the interrupts and set up a 16-bit
counter at $50. The interrupt service routine will
simply increment the counter so that at any time
inspection of $50 will give the number of timing
signals that have been received, from which the
time can be calculated if the start-up time and the
frequency of the timing signals are known.

The second example program assumes a
printer is connected to the same PIA at SE000. We
shall employ a buffer, of indeterminate length, at
$100 to store one line of output to be printed by

the service routine. A flag at $50 is set to zero
while the line is being printed, and to one when
the line is finished. This will enable some other
routine (which we shall not be concerned with
here) to refill the buffer. Locations $51 and $52
contain a pointer into the buffer giving the
address of the next character to be printed. The
first subroutine sets up the PIA, flag and buffer
pointer for a new line.

Program One
PIACR

PIADR
INTRP
CLK1
CLK2

INITCK

WAITCK

INTRP
PIADA
CLK1
#1
CLK1

EQU
EQU
EQU
EQU
EQU
ORG
CLR
CLR
LDA
STA
AN DCC
TST
BEQ
RTS
ORG
LDA
Lp D
ADDD
STD
RT1

$E001
$E000
$2000
$50
$51
$1000
CLK1

CLK2
10/0 00000101
PIACR
#0/011101111
CLK2
WAITCK

Interrupt service routine
Clear interrupt
Get count
Increment count

THE HOME COMPUTER ADVANCED COURSE 699

