
II 
	

SMOOTH SCROLLING/MACJUNE CODE i!J 

SMOOTH MOVER 
Many arcade-type computer games use a 
scrolling background to give a sense of rapid 
movement. The Commodore 64 supports 
'smooth' scrolling (i.e. one pixel at a time) in 
both the vertical and horizontal directions. 
We create a routine to scroll a background 
design horizontally across the 64's screen. 

The Commodore video controller (VIC) chip can 
displace the Commodore screen by UP to eight 
pixels in either direction. Horizontal displacement 
is controlled by the lowest three bits of the VIC 
register at location 53270 ($0016). Setting these 
three bits to values from 7 to 0 in sequence 
progressively displaces the screen one pixel to the 
left. In BASIC, we would use the following POKE 
statement: 

POKE 53270, (PEEK(53270) AND 248)+P 

where P has a value from 0 to 7. 
By combining this facility with a machine code 

routine that moves all screen data one cell to the 
left and introduces a new column of data at the 
right-hand edge, we can produce a smooth 
scrolling effect. So that data can appear to scroll 
smoothly into and out of view, the Commodore 64 
screen width should be reduced to 38 columns, 
instead of the normal 40 columns. To change to 
38-column mode, bit 3 of the horizontal-scrolling 
register should be set to zero. In BASIC, we make the 
following POKE: 

POKE 53270,PEEK(53270)AND247 

The screen can be reset to the normal 40 columns 
by setting bit 3 to one. 

The flowchart details the various tasks that have 
to be carried out to produce smooth horizontal 
scrolling. It is important to note that if we move or 
insert screen data, we must also make 
corresponding changes to the colour data. 

MOVING SCREEN DATA 
In principle, this task is straightforward. The 
screen data is normally held in 1,000 consecutive 
bytes starting at location 1024 ($0400): the first 40 
bytes making up the top row, the next 40 forming 
the second row, and so on. To make the data 
appear to move one place left, we simply have to 
move each byte of data into the byte below its 
original position. This section of the routine 
employs zero-page pointers and indirect 
addressing to move each byte of screen and colour 
data one byte lower in memory. 

If we call the base address of the screen area SB, 
then the last cell in the top row will be SB+39, the 
last cell in the second row will be SB+79, and so 
on. So that the data to be scrolled onto the screen 
can be stored in memory in a similar way to the 
actual screen - that is, in packets of 1,000 bytes - 
the data for insertion to the right-hand edge of the 
screen will be the first, 41st, 81st (and soon) bytes 
of the area we have set side for that data. The 
following diagram clarifies this: 

Scroll Your Own Screen 
Scrolling screen designs onto 
the VDU from memory 
involves three main stages. 
First of all, each byte in the 
screen memory area is moved 
down one position. Because 
the screen is set out so that 
screen rows are held as 
sequential bytes, this has the 
effect of making each 
character on the screen 
appear to move one place to 
the left, with the exception of 
the characters appearing in 
the leftmost column of the 
screen. Each character in this 
column appears to wrap 
around' to the rightmost 
column. The top left screen 
character disappears during 
this process and a spurious 
character enters the screen 
area in the bottom left corner. 

The second phase involves 
copying the relevant column 
from the screen memory into 
the rightmost column of the 
screen. 

Having done this, the VIC 
chip scrolling registers can be 
manipulated repeatedly to 
make the screen appear to 
scroll a pixel at a time into the 
visible screen area 

SCREEN WINDOW INTO MEMORY 

THREE 88YDSCREEN 
SIGNS HELD IN MEMORY 

A COLUMN FROM 
MEMORY IS INSERTED 

ME U OR 
COLUMN 

m- N 

-a'- M 

- D 

-iØ—  N 

THE HOME COMPUTER ADVANCED COURSE 937 


