
MACHINE CODE/PART 16

THE GREAT DIVIDE
We conclude this series of machine code
tutorials with a brief study of unsigned
binary division and the use of operating
system ROM routines in Assembly
language screen display programming. In a
summary of this introductory section of the
course, we review the major themes and
topics — from BASIC to branching, from
arrays to assemblers.

—
Just as we used the manual long multiplication
method as an algorithm for binary multiplication
(see page 298), so the manual long division
method is a model for binary division. Consider
this binary long division:

00001110 r00 quotient
1011)10011010 dividend

–1011 subtract divisor
10000
–1011 subtract divisor

1011
–1011 subtract divisor

00 no remainder

The essence of the method is the repeated
subtraction of the divisor from the high order bits
of the dividend. Depending on the result of this
subtraction, a zero or a one is shifted into the
quotient. The remainder is the result of the last
subtraction of a divisor.

The various ways in which this algorithm may
be implemented in Assembly language are not as
apparent as they were for multiplication.
However, as before, the Z80 version uses the
power and flexibility of its 16-bit registers, while
the 6502 must fetch and carry eight bits at a time.
The divisor is in the address labelled DIVSR, the
dividend in DVDND, the quotient in QUOT, and the
remainder in R M N DR. The program in Z80 and
6502 Assembly language is given.

Notice in both cases that when the divisor is
subtracted from the partial dividend with a
negative result, the dividend must be restored by
adding the divisor back in again. The 6502 version
is noteworthy for its treatment of the processor
status register after the divisor subtraction: the
carry flag must be rotated into the quotient, but its
state must also be preserved to indicate the result
of the subtraction. Consequently, the PSR is
pushed onto the stack before the rotation, and
pulled off it afterwards, thus restoring the carry to
its immediate post-subtraction state.

We have now considered the four rules of
arithmetic — this is plainly worth doing as a

316 THE HOME COMPUTER ADVANCED COURSE

programming exercise for the insight it brings to
machine processes, but inventing all the various
combinations of single- and multiple-byte
arithmetic is unnecessary, given that
programmers have been writing these routines in
textbooks and magazines for years. When the
need arises for variations of the routines that we
have developed, they will be supplied or set as
exercises.

SCREEN OUTPUT
So far in the course we have used RAM memory
and the CPU as a calculating system, and left the
results of our efforts somewhere in RAM to be
inspected manually using a monitor program. This
is obviously unsatisfactory, but until arithmetic
and subroutine calls had been studied there was
simply no point in considering the screen output
from machine code.

Most micros have a memory-mapped display.
This means that an area of RAM is dedicated to
holding an image of the screen. The screen display
is composed of dots, or pixels, which are either on
or off. These can, therefore, be represented by


