DIRECTING
THE ACTION

Good arcade games need to be written, at
least in part, in machine code. This is a
challenge for the beginner, so here we
present a machine code sprite routine for the
Spectrum. It can be used in two ways —
either incorporated in a Basic program by
those who don’t understand machine code,
or used as a starting point by those who do.

e —e—

Spectrum Basic has many limitations, and these
are especially noticeable when moving graphics
are needed. Action games require the use of sprites
of various shapes and sizes; these should be
capable of smooth movement in all directions.

It is not easy to write graphics routines in
Assembly language, but the program presented
here should give you some good ideas on how to
approach the task. The program prints a
background of randomly placed asterisks, and
allows you to move a user-defined shape (our
example uses a cross) around the screen by
pressing the unshifted cursor keys. The cross
moves in smooth one-pixel steps, up, down, right
or left, and leaves the background unchanged. The
sprite-moving routine may easily be incorporated
into your BASIC programs.

To instal the program in your Spectrum, you
should first type in the Basic program. The
machine code may then be entered, either by
typing in the Basic loader program, which reads
the code from data statements and then POKEs it
into memory, or by entering the Assembly
language source code by way of a suitable
assembler. Both Basic and machine code may be
saved on cassette with lines 9000 and 9010 of the
BASIC program.

To understand how the program works we will
start by looking at the Basic program. The
subroutine at line 1000 reads the definition of the
sprite from the data statements and POKESs this into
RAM where it can be used by the machine code
program. Lines 90 to 110 print the background,
and line 120 sets the starting position for the cross.
PRINT AT 10,16 makes the Basic interpreter calculate
the screen address corresponding to these
character co-ordinates, and this address is stored
in the system variable DFCC (addresses 23684 and
23685) where it can be read by the machine code
program. Line 130 calls the initialisation section of
the machine code program. Lines 140 to 180 are a
loop that waits for a key to be pressed, POKEs the
key value into a memory location for the machine
code to read, and then calls the machine code to
move the sprite one pixel in the direction indicated
by the key.

The Assembly language program begins by
defining names for the memory locations used.
KEY is where the key value is stored. SPRPOS is used
to hold the memory address of the screen position
at which the sprite will appear. SPRTAB is a table in
which the program stores the definition of the
sprite and the contents of the screen locations that
have been overwritten by the sprite. The sprite can
be moved anywhere on the screen, not merely in
jumps of whole character squares. So the eight bits
in each row of the sprite may be divided between
two bytes of screen memory, and the table uses two
bytes to store the eight bits, split in the same way as
on the screen. The memory location BITPOS is used

to store the number of bits that the sprite data has

been moved from the start of the byte.

The initialisation section of the program reads
the starting screen address of the sprite from DFCC,
then jumps to the section labelled SAVSCR, where it

stores the screen address in SPRPOS, loads the
value 1 into the D register, and calls the subroutine
UNDER. When D is set to 1, UNDER copies the
contents of the screen area in which the sprite will
be printed so that the background may be restored
once the sprite has moved on. The program then
calls the subroutine PRSPRT to print the sprite on
the screen.

The section of the program that handles the
sprite movement starts at the label MOVSPR. It
begins by loading 0 into the D register and calling

Shift left

Exchange

THE HOME COMPUTER ADVANCED COURSE 357

Sprite In Motion

The BASIC demonstration
program moves the sprite
(initialised as a cross in the
DATA statements) across a
background of stars in
response to the unshifted
cursor keys

LIZ HEANEY

Shift And Exchange

Shifting each of the sprite

bytes (represented here by

the Xs), in the DE register to

effect left or right screen

movement may cause a bit to
¢ ‘wrap around”. If this

ol |E happens, D and E are

= exchanged, re-uniting the
< sprite bits



