
Addressing The Problem
SWI VECTOR

PROGRAM: I
PROGRAM MEMORY

BEGIN MAIN LOOP JUMP TABLE

ENTRY

AStacki This
The debugger program begins
with a BSR call to the
initialisation routine, followed by
the start of the main program
loop. One of the initialisation
tasks is to ascertain the absolute
address of this loop start, and to
copy it into the interrupt lump
table so that when an SWI is
executed control will pass
through the jump table and back
to the loop start. This address
cannot be known in advance
because the program must be
fully relocatable; fortunately, the
return address stacked by the
BSR is precisely the address in
question, so the initialisation
routine needs merely to copy it
from the stack to the jump table

PC

STACK

FREE BYTEI(.J

MACHINE CODE/6809CODE

save the value of the stack pointer as the first
operation after the interrupt occurs, so that it can
be used as a reference.

In coding the R command, we will assume that
this has been done, so that we can retrieve these
register contents. The structure of the routine is
perfectly straightforward - we simply take each
value in turn without actually pulling them off the
stack and display them with appropriate labels.
The only exception will be the value of S - this
should be the value prior to the interrupt and can
be obtained by adding the appropriate amount to
the saved value of S that we use to reference the
stacked register values.

COMMAND R
Data:

Stack-Pointer is the value of the top of stack after
interrupt inX
Single-Byte-Value holds the values of single-byte
registers in B
Two-Byte-Value holds the values of 16-bit
registers in 0
Labels holds the labels for the nine registers

Get Stack-Pointer
Load CC into Single-Byte-Value
Display label(1), Single-Byte-Value
Repeat the above for A, B, and DP
Load X into Two-Byte-Value
Display label(5), Two-Byte-Value
Repeat the above for Y, U and PC
Add 12 to original value of Stack-Pointer
Display label (9), Stack-Pointer

There are two remaining commands: 0, to quit the
program, does not need a special routine of its
own; and G, to resume program execution after a

breakpoint. At this point we have to replace the
SWI instruction that caused the break with the
original instruction that it replaced and then pass
control back to that instruction. We can restore the
registers to their original contents easily enough,
simply by using an Rh, which unstacks them all.
We must, however, be careful that the value of the
PC that is unstacked is going to be the value for the
next instruction; since this is one greater than the
value we require, we must adjust the value on the
stack before we return.

COMMAND G
Data:

Breakpoint-Table is a table of 16-bit addresses of
breakpoints
Removed-Values is a table of op-codes replaced
with SWIs
Next-Breakpoint is 2 number in the range 1 t 16
Stack-Pointer is the saved value of the stack
pointer after the SWI

PI.

If Next-Breakpoint >0 and <=16 then
Get op-code from Removed-Values (Next-
Breakpoint)
Store it at address in Breakpoint-Table (Next-
Breakpoint)
Set to Stack-Pointer
Decrement value of PC on stack
Increment Next-Breakpoint
Return from interrupt

else
Return from subroutine

Our 6809 machine code series concludes in the
next instalment, when we code the main module
of our debugger, and look at the operation of the
program as a whole.

I COPY ENTRY ADDRESS

GET START ADDRESS

STORE START ADDRESS

818 THE HOME COMPUTER ADVANCED COURSE

