
SOFTWARE/FILE HANDLING

FOR THE RECORD

In this series on tile handling we've looked at
the basic principles behind all computer
filing systems. However, it is important to
realise that file handling methods tend to be
machine-specific. In this final instalment,
therefore, we examine the ways in which
these techniques may be used on cassette-
based micros.

Different micros use different file handling
techniques, and therefore it is often necessary to
adapt a standard program to run on a particular
machine. For this reason, it is important to
understand how the facilities and commands
offered by your own system relate to the general
methods we have discussed. As an example, let
us examine the storage of data files on a standard
cassette-based micro. The first point to notice is
that cassette systems, by their very nature, cannot
handle random access files (see page 244), so data
must be accessed in the order in which it is stored
— that is, sequentially.

As sequential file handling involves reading
information from one file, working on this
information and then writing the modified data
into a second file, it is obvious that two files must
be in use ('open') at the same time. A cassette
recorder is incapable of moving directly and
accurately between two tape positions, so this
`two-file' system is not suitable for most cassette-
based micros. The exceptions to this rule are those
few micros, such as the Newbrain and
Commodore PET range, that provide two cassette
ports — one for reading, one for writing.

Most home machines, therefore, are limited to
one sequential file at a time. In practice, this
imposes some major limitations. The file must be
read into memory before it is used, and then, if
changes have to made, it must be written out onto
cassette again. This may be done at intervals
during program operation, or once at the end of
the program run. Data files must be small enough
to reside in RAM after space has been taken up by
the filing program itself. Most home micros are
thus restricted to small data files.

Three main methods have evolved for storing
information on cassette. The simplest system does
not use separate data files at all; instead all current
variables arc stored along with the program
whenever the SAVE command is used. This method
is used on the ZX81 and is also available on the
Sinclair Spectrum. When a new data file is
required, a 'fresh' copy of the program is used and
then SAVEd along with its data. When this version
is next LOADed, the data is automatically read back

294 THE HOME COMPUTER ADVANCED COURSE

into the required variables. The virtue of this
method is its simplicity — all the user has to do is to
make sure that the complete program is correctly
SAVEd and LOADed.

A slightly more sophisticated system requires a
BASIC that is able to store and read back specific
arrays. On the Oric Atmos, for example, the
command STO RE AS, "NAME' will write the array AS
to tape, and RECALL AS, "NAME" will read it back
again. The whole array (AS(1 ), AS (2), etc.) is SAVEd,
although the STORE and RECALL commands don't
actually specify the array size, which is given
automatically when the array is DI Mensioned at the
start of the program.

One problem with this system is keeping track
of the number of entries in the array that are used
in your program. One solution is to store the
record count in the array before it is SAVEd. Most
machines allow a zero subscript, so an element
such as A$ (0,0) can be used for the record count.
The record count will be a numeric variable (in our
program we use R), but if a string array is being
used this must be converted into a string. This is
done quite simply with a line such as: A$(0,0) =
SIRS (R).Once the array has been reloaded into the
computer, R is reset with: R = VAL(A$ (0,0)).

Although many micros do not support
sophisticated file handling procedures, these may
be simulated, as the listings here show. Once the
file is safely installed in memory, it is easy to use
BASIC arrays to treat it as a random access file.

Let's assume that a two-dimensional string
array is used to store the data; this may be set up
with a command such as DIM A5(100,3). The first
subscript in the array may be used to refer to a
particular record, and the second subscript will
point to one of four fields. This allows the data to
be stored in the familiar table format and is
equivalent in operation to a random access file.

Another useful facility present on some
machines is the APPEND command. This allows
you to add data to the end of the sequential file
without first reading through it and then creating a
new version. Some computers have a command
that allows a number of fields in a sequential file to
be skipped over and this provides a simple random
access facility.

This series has concentrated on the
fundamental aspects of a complex topic. File
handling is very much machine-dependent, and
all the ideas that we have presented in these
articles will need to be adapted for your own
machine. But the basic principles will be the same,
no matter what micro you use, and you should find
much of the material useful when writing your
own programs.


