
...... IFPROGRAMMINGICHNIQUES/TOP-DOWN PROGRAMMING

TOP SECRET
Our course on program design has so far
shown how programs may be constructed
from small, largely independent units called
modules. We have looked in detail at how
such building blocks are designed, and here
we show you how to use them in the
development of a complete program.

When building a program, it is a good idea to
develop an overall structure, consisting of a base
level of general-purpose routines that are used by
other routines of increasing specialisation on
higher levels, all under the direction of a single
control module at the top. This 'pyramid' structure
will allow us to use a design method called
'program refinement' or 'top-down design'.

Top-down design, as its name suggests, entails
designing the topmost control program first. We
describe its functions in terms of calls to 'lower'
level routines and, for the time being, we need not
worry too much about how these lower-level
modules will work. Once this is done, we move
down a level and describe the workings of each
routine called by the top-level module. Each
routine is described in terms of the routines it must
call, and this process is repeated level by level until
we reach the lowest level. At that stage, the
functions performed by the routine we are
describing are so simple that they may be defined
by using the programming language itself.

As an example, let us look at the design of a
'Hangman' game. Instead of the player trying to
guess a word selected by the program, as is the case
with most computer versions of the game, we want
the program to guess a word that we have chosen.
One way of achieving this, without giving the
program a long list of English words, is to enter
data on the likelihood of particular letter
sequences occurring.
100 PEN InitialiEe variables and arrayE

500 REM *****Control Routine***********
510 REM
520 GOSUB 1000:REM Title & Help screens
530 GOSUB 20)0 REM Set up Board

410 GOSUB 4000 :REM Find word length
from player
550 GOSUB 8000:REM Select data set and
l oad it
560 GOSUB 3000:REM Guess a letter
570 GOSUB 4500:REM Check ouess with
player
580 GOSUB s000:REM Update the board
590 IF GAME_NOT_OVER THEN 560: REM
guess again until game is over
600 IF WIN THEN ' GOSUB 10000 ELSE
GOSUB 11000:REM Give appropriate

ending for win or lose
610 GOSUB 6000 :REM ask the player for
another game
620 IF ANOTHER THEN 530:REM if
another then start again
630 GOSUB 7000: REM sa y goodbye and stop
640 END

We know before we star that certain things
must be done: variables need to be initialised,
arrays must be dimensioned, the 'board' display
has to be set up and updated as necessary, and
routines must be written that keep the score, that
make guesses, and that end the game.

Our first attempt at designing the control
routine has a simple REM statement to indicate that
variables and arrays must be initialised — we can
fill in all the necessary details at a later stage. The
control routine itself is simply a pair of loops. The
outer loop (line 620) tests to see whether the user
is signalling the end of a session, while the inner
loop (line 590) tests to see if the game has ended.

Should we need to test the control routine, we
must set up dummy subroutines to match the
G OSU Bs. Each GOSU B in the control routine should
have a REM statement to explain its function and
should start at a convenient line number —
preferably one that is a round figure, such as 1000
or 5000. It is a good idea to ensure that routines
with similar functions are given standardised line
numbers; this will make life easier when routines
are moved from one program to another. For
example, game instructions might be contained in
a subroutine that begins at line 1000, while a
GOSUB 7000 program line will always end a game
by calling a standard routine.

Our initial control routine is kept short and
simple. It will fit onto the screen and therefore is
easier to understand and debug than a program
that extends over several screens. The three
variables, GAME NOT OVER, WIN and ANOTHER, are
all flags that are set in the various subroutines
called by the control routine and are used here to
determine whether the control program works in
the way we intend. It should be quite easy to spot
any errors in logic in this simple control routine.

At this stage it is necessary to look at the
program's structure with a critical eye — we need to
ensure that the program behaves as it should in all
circumstances. We can also start to make
improvements in the program design; for
example, we might like to make the instructions
available at any stage of the game and it might also
be a good idea to keep a record of how many
games the computer or player has won and a list of
words that beat the program. Any or all of these
changes can be made at this stage.

The next step is to specify each of the

476 THE HOME COMPUTER ADVANCED COURSE

