
® Basic Programming

Finishing Touches
By removing the anomalies caused by stringing together the
modules, and adding a few more facilities, our address book
program is now complete

In the last instalment of the course, readers were
left with the problem of working out why running
the address book program, then adding a record
(using *ADDREC *), then locating a record (using
`FINDREC'), and then exiting from the program
(using * EXPROG *) would result in the added record
not being saved. The problem arose through the
use of the variable RM 00 as a flag to indicate that a
record had been modified (implying that the file
might be out of order). The *SRTREC* subroutine
would sort the file into alphabetical order, and
then set AM 0 D to 0 on the assumption that the file is
in order. Executing * EX P ROG * checked to see if the
file was in order (RMOD = 0) and didn't bother to
save the file if it was in a sorted condition.

Adding a record (using *ADDREC *) would set
RMOD to 1 (since a record had been modified, i.e. a
new record had been added), but *SRTREC* would
set RMOD to 0, indicating that the file had been
sorted, What is really needed, however,
irrespective of whether the file has been sorted or
not, is a flag that signals that a record has been
modified and a separate flag to show if the file is in
a sorted condition or not. Then, subroutines that
need to know that the file is sorted can check the
`sorted' flag, and subroutines that need to know if
any record has been modified can check the
`modified' flag.

Suitable names for the two flags would be
RMOD, to show if a record has been modified, and
SRTD, to show if the file has been sorted.

When the program was presented on page 399,
line 1230 contained the statement LET SVED = 0.

The SVED variable has not been used so far, but
when the line was included, it was realised that
RMOD alone would not be enough. The variable
name SVED was chosen with the idea that certain
conditions would have to be true before a save (to
tape or disk) would be necessary.

A more appropriate name for this flag would be
SRTD (to indicate that the file is in a sorted
condition). The original he 1230 has been
changed to:

1230 LET SPTD =1

There are now four possible states regarding the
condition of the data file. These are:

RMOD SRTD
Not modified, not sorted (illegal)
Modified, not sorted
Not modified, sorted

Modified, sorted

436 THE HOME COMPUTER COURSE

AM 0 D=0 and S RTD=0 is illegal because the program
ensures that the data file is always sorted before it
is saved. When the program is run, RMOD is set to 0
(line 1220) to indicate that no modifications have
taken place, and SRTD is set to 1 (line 1230) to
indicate that the file is sorted.

Any operation that modifies a record (such as
'ADDREC`,*DELREC*or*MODREC*)setsRMODto1
and this flag is not reset by any subsequent
operation. SRTD, which is initially set to 1, is reset to
0 by any activity that might mean the data has
become out of order (such as in ' M O D R EC * if the
name field is altered). Any activity that needs to
assume the data is sorted (such as * FINDREC*)

always checks SRTD and calls the sort routine if
SRTD = 0. By using these two flags, instead of just
RMOD, the program is able to terminate without
saving the data file if no modifications have taken
place during the current run of the program. It will
not be `tricked into' terminating without saving if a
sort takes place after a record modification.

The other variable not used so far is CURR. This
variable is used to save the `current' position in the
array of a record after one has been located by the
search routine. CUR R is not cleared after a value has
been assigned to it; it is used to carry information
about the target record to other routines in the
program. The end of the `FINDREC* (search)
routine has been modified in lines 3320 and 3330
to set the value of CURR: to 0 if the search failed to
find the target record; and to MID if the search was
successful.

Line 13340 branches to the *NOTREC*
subroutine if CURR is 0. This displays a message
saying that the record has not been found and
displays the search key ,NAMFLD$(SIZE). *NOTREC*
returns to the main menu after the space bar has
been pressed. `NOTREC* could be modified quite
easily to give the user the opportunity to:

PRESS RETURN TO TRY AGAIN OR
SPACE BAR TO CONTINUE

It might appear that the easiest way to achieve this
would be to call 

*FINDREC* 
again if RETURN were

pressed. However, calling a subroutine from
within itself, whilst not illegal in BASIC, `confuses'
the return address and will cause the subroutine to
be repeated again even when you don't want it to.
There are ways of getting round this problem, but
the programming starts to get a bit tricky!

An easier way would be to have used a flag
(such as NREC for not record) and reset it in
`NOTREC *, allow the subroutine to return in the


