
Basic Programming M
efficient sorting routine, but more sophisticated
sorts are much harder to understand than the one
we have used. Whether or not you should consider
a better sort routine depends on the number of
items to be sorted. The `time complexity' of a
bubble sort such as ours is n 2 . In other words, the
time taken for the data to he sorted increases as the
square of the number of items being sorted. If two
items took four milliseconds to sort, four items
would take 16 milliseconds, 50 items would take
two and a half seconds and 1,000 items would take
more than 16 minutes. A wait of two or three
seconds might he perfectly acceptable during the
use of a program like ours, but a wait of a quarter
of an hour certainly wouldn't be.

The way this program has been written allows a
maximum of only 50 records, so unacceptable
delays during sorts should not be a problem. Later
in the course, however, we shall outline some of
the techniques that can be used to create dynamic
files that can grow to almost any size. If you do
attempt such a modification to the program, a
more advanced sort routine would be one of the
first problems to be tackled.

The data items being sorted are the character
strings in MODFLDS(L) and MODFLD$(L+1). Records
are swapped only if MODFLDS(L) is greater than
MODFLDS(L+1), and the index field (which is not
being used at present) is updated in lines 11490
and 11570. Every time two records have been
swapped, the variable S (to indicate that a swap
has taken place) is set to 1. When the sorting
routine reaches line 11290 it checks the value of S
and branches back to compare all the records
again. When all the records are in order, the value
of S will be left at 0 and the routine will be
terminated after the value of RMOD has been reset
to 0.

The EXPROG routine (referred to as *EXPROG * in
the program listing) begins at line 11000. It starts
by checking to see if any record has been modified
during the current execution of the program (line
11050: IF RM0D=0 THEN RETURN). If there has been
no modification of the file, there will be no need to
save again, so the routine RETURNS to the main
program. This will take us back to line 100, which
checks the value of CHOI. If CHOI has a value of 9 (as
it would if *EXPROG* is being executed) the main
program simply goes on to the END statement in
line 110.

If the program finds that RMOD is 1 in line 11050
it means that one or more records have been
modified in some way and that there is a chance
that they are no longer in order. This being so, the
*EXPROG* routine calls the sort routine (line
11070) and then, after all the records have been
sorted, saves them onto tape or disk.

The save routine 
(*SAVREC*) is called in line

11090 and the routine starts at line 12000.
*SAVREC*, in the main listing, is written in
Microsoft BASIC, so it is important to bear in mind
that the details of file-handling vary from one
version of BASIC to another (see `Basic Flavours').
Line 12030 opens the ADBK.DAT data file and

assigns the channel number #1 for the operation.
Line 12050 sets the limits for the loop that counts
through all the records in the file. The upper limit is
SIZE-1, not SIZE, because the SIZE variable always
has a value one greater than the number of valid
records in the file (so that if a new record is added,
it will not be written over an existing record).

The format of lines 12060 and 12070 is
particularly noteworthy. Each field is separated by
a ",", which is also sent to the file. This comma is
required by most versions of BASIC because IN PUT#
and PRINT# work in the same way as the ordinary
INPUT and PRINT statements. Consider the
statement INPUT X,Y,Z. This would expect an input
from the keyboard such as 10,12,15<CR>, which
would assign 10,12 and 15 to X, Y and Z respectively.
Without the commas, the INPUT statement would
not be able to tell where each data item ended and
would assign all the data to the first variable.
Similarly, the INPUT# statement (in most BASICS)

would not be able to tell where each data file
record ended and would try to fill each string
variable with as much data as could be fitted in.
Since in most BASICS string variables can holdup to
255 characters, the data in the data file would soon
all be assigned long before the FOR L =1 TO SIZE-1
loop had terminated. This would result in an INPUT
PAST END error message (which indicates that an
INPUT statement was issued after all the data has
been exhausted) and the string variables (such as
NAMFLD$(x)) containing far more data than they
should.

Once all the records have been stored in the
data file, from L=1 TO SIZE-1, *SAVREC* RETURNsto
line 90 in the main program. Line 100 checks the
value of CHOI to see if the last operation was
*EXPROG* or not. If it was 9 (save and exit), the
program goes on to the END statement in line 110.
If CHOI has any other value, the program jumps
back to *CHOOSE* and allows the user to select
another option again.

As a final footnote, we should mention the
*FLSIZE* routine that starts at line 12500. This is
offered as a possible alternative to the statement in
line 1510. As presented, the program depends on
the presence of an end-of-file function: IF EOF(1) =
-1 THEN LET L = 50. All BASICS have some way of
indicating that the end of a file has been reached,
either with a special function such as EOF(x) or a
PEEK to a special memory location. The *FLSIZE*
routine at line 12500 is offered as a suggestion if an
EOF function is not available, in which case line
1510 would need to be replaced by GOSUB 12500.

Basic Flavours
Before running the address book program you
must create on tape the name-field file. The
following program will achieve this.

10 REM PROGRAM TO CREATE NFLD FILE ON
TAPE

20 DIM Z$(1,30)
30 LET Z$(1)= @FIRST"
40 SAVE - NFLD" DATA ZS()
50 STOP

THE HOME COMPUTER COURSE 397


