IAN MCKINNELL

LOX#0 2
LOOP
LDA TABLEX 4
STAPORT 4
INX 2
CMP #STEPS 2
BNE LOOP1 3
(2 if loop fails)

SINE WRITING

In the last section of Workshop we built a
digital-to-analogue converter to expand our
user port system. We can now begin to
design software to produce sound signals
from this device. In this instalment we look
at the production of different waveforms
and discover how to determine the duration
of a note.

Once these steps have been followed, we can test
the system using a short Basic program. In essence,
sound is generated electrically by providing an
oscillating voltage to a speaker. We can generate a
crude oscillating voltage output from our D/A
converter by changing the contents of the user port
data register from 0 to 255 and back in rapid
succession. Type in the following program and
RUN it. Turn the D/A potentiometer clockwise
until sound can be heard.

1@ WEH sessx [HM BASTE SO0NT BENERATIIR W #*a

WA IS T DT REG =S85

A P EDDR, S5

J.1 Ir!u.||| DATEE G, (g FORT-1TON: NEX T s FOFE DA TRE 17, 250 GOTH4R
I Kl M oewen bR A T BORDY G ME Hey VO [E R

0 DI =B L PN TREG=%F E)

DHIR=20

aL PR TREG=OzF O F= L TOMNEYT: DATREG=2m% 2 GOTIR

732 THE HOME COMPUTER ADVANCED COURSE

Notice that the Basic program has a repeating
structure, all crunched down onto a single line to
produce maximum speed. There is a delay loop
inserted between the data register being set to 255
and it being set to 0. The value N in line 35 sets the
length of this delay. Try altering the value of N and
re-running the program. You will notice that the
pitch of the tone heard goes down as the value of N
increases.

The highest pitch obtainable from this Basic
program will occur when the delay loop is
removed altogether. Even a loop executed once
has an audible effect on the pitch of the note heard.

If you have experimented with different
values of N in the Basic program given, you will
have noticed that changing the value of N by 1 hasa
significant effect on the pitch of the note. BASIC is
just not fast enough to allow us to control the rate
of oscillation accurately. Instead we must use
machine code.

In the next instalment of Workshop we shall
look at the difficult problem of controlling pitch
and volume from machine code. Here we
concentrate on devising a program to produce
different waveforms. The waveform produced by
the Basic program used earlier was a square wave.
It is, however, possible to produce other
waveforms, which alter the ‘quality’ of the tone
heard. We can digitally synthesise sine and saw-
tooth waves by taking a number of samples of the
waveform and putting them in a look-up table.
The machine code program required to place
these samples one after another in the data register
is in essence very simple. Our illustration shows
these three waveforms, together with
accompanying look-up tables for sine and saw-
tooth waves. If the waveform cycle is divided into
steps, and these steps sampled, then the program
loop that sends these samples out through the user
port is shown left.

In producing sound, timing is crucial. Next to
each instruction is the number of machine cycles
required to execute that instruction. From this
formula we can calculate the total number of
machine cycles it takes to produce one complete
waveform cycle: number of machine cycles =
2+(4+4+2+2+3)X steps —1 = 1 + 15 X steps.

If the wave is split into 80 samples then the
number of machine cycles required to produce
one waveform cycle is 1,201.

As each machine cycle in 6502 code takes
about a millionth of a second, the total number of
waveform cycles that can be produced in one
second (i.e. the frequency of the note) is given by
this calculation: frequency = 1,000,000/1201 =
832 Hz. As middle C is 512 Hz, the note produced

d -

