
Indirect Indexed Addressing
The argument [A,XI of the LDA
instruction is in brackets,
meaning that the contents of X
(SC019 here) are to be added to
the contents of A ($23), giving a
16-bit address (SCO3C). This
byte and the next (SCO3D) are to
be treated as a pointer to the
effective load address (SF84B)
whose contents (S7E) are finally
loaded into A. Because Xis added
to A before the indirect access,
this is known as pre-indexed
indirection; the alternative, post-
indexing, requires that the indirect
address be calculated before the
indexing takes place

'

Xf119A

INDEXING I\

SF8SCO30)POINTER

1,13SCO3D

SCO3E

:43

MEMORY

6809 CODE/MACHINE CODE

JUMP LEADS
Following our examination of indexed
addressing on the 6809 processor, we now
consider how indirect addressing is used, and
illustrate this by describing routines to write
characters to a screen display.

• — •
First of all, it should be stated that indirect addressing
is not a separate addressing mode in its own right but
is an additional feature that may be used in
combination with most other modes; it is really a
further stage in calculating the effective address (the
address from which the data is actually to be fetched).
The effective address is calculated in any of the ways
we have described (by direct access, by indexed
addressing, or by effective address calculation), but if
indirection is specified then the contents of the
address so calculated and the next consecutive
memory location are treated as an address. It is this
address that becomes the final effective address, from
which data is loaded.

For example, if the following values are stored:

AddressContents
300040
3001OA
400AF2

then the instruction LDA $3000 will load the value $40
into accumulator A, the effective address being
$ 3000 . Indirection is always specified by placing
square brackets around the operand, so LDA [$3000]
will load the value $ F2 into A, the effective address
being the value stored in the address that is in turn
stored in $3000 and $3001 — in this case, $400A. The
contents of $3000 and $3001 form a pointer or vector
to the effective address, 5400A. Notice the 6809
convention that addresses are stored with hi-byte
before lo-byte: thus $40 is stored in $3000 and $0A is
stored in $3001. This is called the hi-lo convention.
The Zilog Z80 and MOS Tech 6502 processors use
the opposite convention — they would require SOA
(the lo-byte of the address) to be stored in $3000 and
$40 (the hi-byte) to be stored in $3001.

Indirection can often be most effectively used in
combination with indexed addressing. The
instruction LDA [AX], which is in indirect indexed
addressing mode, will calculate an address by first
adding the contents of A and X and then using the 16-
bit value that is stored at this and the next location as
the effective address whose contents will be loaded
into A.

The 6809 has, in fact, less use for indirect
addressing than most processors (both 6502 and Z80
programs use it frequently) because of its wealth of
indexed addressing modes. There are, however,
situations in which indirection can be very useful —

one of these, which we will deal with at greater length
in a future instalment, is the use of peripheral
interface devices. Motorola processors, unlike Intel's
8080 and 8086 families, have memory-mapped I/O
(Input/Output). The communications registers in
the interface devices appear in the system's main
memory map, and values can be stored to or loaded
from them as if they were any other memory
locations instead of being, effectively, a channel to
the interface device. A routine to control one of these
devices — for example, a print routine — needs the
address of the device's interface register. If the device
is relocated in the memory map, or if there is more
than one device of that type, then it is much simpler to
deal with this by changing one memory location that
contains the address of the device communication
register (a pointer to the device) rather than having to
find and change every occurrence of the device
address. The routine refers to the device indirectly,
using the pointer.

This example illustrates the general usage of
indirect addressing — when addresses that a program
refers to may be changed, it is more convenient to use
fixed-address pointers to refer to these locations. In
this way, changes in the actual locations require only
changes in the pointer contents: the program refers to
thç addresses indirectly.

The most common use of this technique is in a
structure known as a jump table, which is simply a
table of pointers. Any operating system contains a
large number of useful routines that carry out the
elemental functions of the machine — for example,
reading a character from the keyboard or displaying a

THE HOME COMPUTER ADVANCED COURSE 637

