
Software I!:i
810 PRINT "AGAIN? (YIN)";
820 INPUT RS
830 IF RS = "Y" THEN GOTO 100
840 END

We may wish to make a decision that will, result in
one of two distinctly different courses of action
being followed. In the example shown below, we
compare a player's game score to the highest
previous score:

No
THISSCORE > Yes
HIGHSCORE?

HIGHSCORE-
THISSCORE

OUTPLT
WD LUCK'

OUTPUT
'CONGRA'ULATIONS'

au-PUT
HIGH SCORE

1200 IF THISSCORE > HIGHSCORE THEN GOTO
1230

1210 PRINT "HARD LUCK. YOU HAVE TO BEAT";
1220 GOTO 1250
1230 LET HIGHSCORE = THISSCORE
1240 PRINT "CONGRATULATIONS! A NEW HIGH

OF";
1250 PRINT HIGHSCORE

Note that the value of HIGHSCORE is printed in
both events, and that the two possible flow paths
rejoin in the process to become the single entry to
this output operation.

All decisions are taken as a result of tests
similar to this, which deliver a positive or
negative, a True or a False result. As you can see,
this purely binary decision-making process denies
the possibility of a `maybe' answer. You can use
whatever terms you wish, but don't forget to label
the two exit paths accordingly!

All programming languages have an inherent
decision statement which, if the True condition is
satisfied, cause a conditional branch, but which
drops control through to the next statement if the
result is False. In the case of a dialect of BASIC that
allows only a simple I F-THEN, we must mimic the
conditional branch by means of a G 010 statement,
as in line 1200 of the last example. The statement
in line 1210 will only be executed if the result of
the test in line 1200 is False.

But what about the second use of GOTO in line
1220? As you can see, the use of GOTO at the end
of the test, to solve the problem of the destination
of the conditional branch, has forced us to use this
method to `join up the two possible control paths
again, in this case at line 1250.

The use of flowcharts usually encourages the
introduction of G OTOs as a means of following the
point to point graphical representation of the

program, In general, this use of unconditional
jumps is rather dangerous. If the version of BASIC

that is being used forces this solution, then a flow
diagram is an excellent method of assessing the
way in which control passes out of the program's
normal succession.

Let's use one last example to examine how the
use of a flowchart allows us to represent
accurately the necessary steps to perform a simple
task: printing out all the numbers between one
and one hundred.

10 LET N = 1
20 PRINT N
30 LET N = N + 1
40IFN> 100 THEN END
50 GOTO 20

The use of flow diagrams in this way tends to
encourage a step by step approach to program
writing which, especially in larger projects, often
leads to a rather inelegant result. For those with
even a passing knowledge of the BASIC language,
the use of a FOR-NEXT loop is obviously indicated.
For example:

10FORN=1 TO 100
20 PRINT N
30 NEXT N
40 END

The flowchart is incapable of representing this
piece of BASIC `shorthand', and to follow it exactly
would lead one to a less efficient way of solving
the problem, It does, however, give us some
information on the structure of the FOR-NEXT
loop, and so is of value when we come to examine
this and other BASIC functions, to determine how
they are constructed.

Flow diagrams are particularly useful during
the planning or conceptualising stage of
programming, especially in the `tricky' parts.
Experienced programmers tend to use them less
than beginners, and will often resort to a flow
diagram to illustrate and document a piece of
software written without their aid. But whether a
flow diagram is drawn out on paper, or it simply
exists inside the programmer's subconscious
mind, the concept of charting the flow of
information and control is central to the use of
computers as a problem-solving tool.

THE HOME COMPUTER COURSE 105


