
• SOFTWARE/FILE HANDLING

CONTINUING
SERIAL
In the last instalment, we introduced the
concept of sequential (or serial) files. We
looked in detail at how they are constructed
and discussed how they are manipulated by
the operating system. Here we look at
methods for using serial files in your own
programs, and show how to overcome some
of their inherent limitations.

A sequential file is a solid block of data on a disk or
tape, and as such there are limitations as to how the
file can be accessed and updated. To retrieve any
one item, you must first read through all the
preceding data. To update the file, it is usually
necessary to make a copy of the file up to the point
where changes are needed, then append the
alterations to the new file and resume copying the
original file immediately after the changes.

It is important to realise that information has to
be organised in a suitable way inside the file. The
choice of how this is done is up to the programmer
and will depend on the application at hand. If it is a
file containing English text then it is likely that it
will be just a sequence of ASCII codes followed by
an end of file marker. However, if the file is to
contain a database such as a catalogue of books,
then the information needs to be organised
appropriately. The common way to do this is to
divide the file into records and fields. Each book
has its own record (entry) in the file and within
each record are a number of fields, such as the
book's title, author, publisher and so on. Within a
sequential file, these divisions have to be marked
by using special characters placed between items
of data.

This is usually done by using a carriage return
character (ASCII code number 13) to act as a
marker between the fields and records. Since the
file will have the same number of fields in each
record, it's easy for the program to keep track of
where a record ends and a new one begins.

Once a sequential file has been created, you
need to be able to access and update it. The basic
operations in filing are: retrieving records, adding
records, deleting records and amending (editing)
records. The diagrams show the various ways of
achieving these with sequential files. Because you
can only read through a sequential file in order and
can't freely change data within it, these operations
work by reading through the file, creating a new
copy as they go. Any information that is to be
changed is then written at the appropriate times
into the new file as it is created. Finally, the new file
becomes the current file and the old one is either
discarded or kept on as a `back-up' copy.

226 THE HOME COMPUTER ADVANCED COURSE

These simple techniques are the basis of all
sequential filing routines. However, they make a
major assumption about the capabilities of the
operating system — that it can have two different
files open at once in order to read from one and
write to another simultaneously. This is not
possible on all disk systems and is possible only on
those cassette-based micros that have two cassette
recorders attached. Both the Grundy Newbrain
and Commodore PET range feature twin cassette
interfaces for exactly this reason. Machines with
single cassette drives are limited to files small
enough to be read into memory in their entirety
and processed there.

These methods of file handling also have an
interesting side effect. After any alterations have
been made to the file (either additions, deletions
or amendments) you have two copies of the file:
an old one that was the file before it was updated
and a new copy with the changes. It is standard
business practice to retain both files so that if
something should happen to the new one, there is
still a copy that is only one set of changes (or
generation) out of date. In fact, most businesses
keep three generations of any given file: the new
file is called the `son' file and the preceding file is
kept on as the `father' file. The file that was used as
the basis for the father file is known as the
`grandfather' file.

These techniques can work with files that are
too big to fit into the computer's memory in their
entirety, because only a portion of the file, usually
a handful of records, is actually being processed at
any one time. With small files, however, much
better performance can be gained by reading the
whole file into arrays in memory and processing it
there. All the file operations can be carried out at
high speed in memory before the complete new
file is written back to disk or tape.

This approach has one major danger — changes
to the file are made permanent only when the
information is written back to cassette or disk and,
therefore, data could be lost if the program or
computer is crashed or switched off while running.
If you are using programs that work in this way,
you should make sure that you frequently write
copies of the file to storage and that a current copy
has been made before the program is terminated.

A little experience with sequential file handling
will show you that the techniques involved,
although cumbersome, are mostly common sense.
On many small systems, sequential files are the
only file structure provided. When we move on to
look at random access files, we'll discover
techniques that complement serial files by
providing simple and fast access and updating.


