
Index Links
The symbol BASE — initialised
as S0500 — is the address of the
first byte in a table of values. The
indexed addressing mode
instruction LDA BASE,X takes
the value of BASE, and adds to it
the contents of the X register, to
produce the actual address of
the byte whose contents are
loaded into the accumulator. If
this instruction is inside a loop
of which X is the counter, then
the entire table can be
accesssed, byte by byte, in
sequence. Since X is a 16-bit
register, the loop could range
over the entire memory space
($0000 — SFFFF in an eight-bit
system such as the 6809)

SYMBOL TABLE

I

LDA BASE, X

50519

$0518

$0017

S0516

$515

$0514

MACHINE CODE/6809 CODE

CHANGE
OF ADDRESS
At this stage in the course, we take a
detailed look at how the two index registers,
X and Y, are used in indexed addressing.
We illustrate the value of indexing by
reference to several example programs.

-
The original concept of the stored program
computer was that by storing the program in the
same place (and in the same form) as the data on
which it was to operate, the program could modify
itself as it was running. The major use of this
feature was not to modify the actual instructions
themselves but to modify the addresses where the
instructions got their data. Imagine the problem of
having to access a table of several thousand
numbers, and having to give separate instructions
for each because each instruction could refer only
to the one unchangeable address.

This problem was greatly alleviated with the
introduction of the concept of address
modification. In this way, the same instruction
could be repeated any number of times and be
made to refer to different addresses where data
was stored by using the changing value in a register
to alter the address. We use this sort of concept all
the time in BASIC programs. For example:

FOR I = 1 TO N

PRINT TABLE(I)

NEXT I

In this case, the same PRINT instruction refers to
different data each time it is used by modifying the
basic data item (TABLE) using an indexed value (I),
which is changed each time it is used.

The fundamental principle of indexed
addressingis that the contents of the index register
are added to the base address given in the
instruction to produce the effective address — the
memory location that is actually accessed. If this
instruction occurs within a loop, then the
adjustment to the index register (usually an
increment or decrement) can be performed within
the loop as well, and thus we can easily access a
whole table of values.

The 6809 not only has two registers for this
purpose, the X and Y registers, but also two further
registers — S and U. In special circumstances it is
possible to use the program counter as well. To
make the whole subject of indexed addressing
even more complex, there are a variety of different
modes of indexing. However, these do cover
nearly all programming requirements. We shall be
using indexing, in one form or another, in all our
programming from this point, so there will be
plenty of opportunity for you to familiarise
yourself with the variety of ways in which it is used.

Indexed addressing is indicated by adding ,X to
the operand field — if the register used is the X
register, of course. So the general form of an
indexed instruction is:

Opcode Offset,Index Register
LDA TABLE1,X

STA TABLE2,Y

In many situations the offset is zero, in which case
it can be omitted. For example:

Opcode ,Index Register
LDA ,X

STA ,Y

Let's see how this works in practice. Suppose we
have a table of 64 eight-bit values stored at $3000
and we want to access the bytes in sequence. We
can define the base address and reserve space for
the table using the directives:

0 RG $3000

TABLE R M B 64

These instructions set the program counter to
$3000, define TABLE as beginning at $3000, and
reserve the next 64 bytes. We now access the bytes
using the next piece of code: the new 0 RG directive
means that our code will be stored in a different
part of memory from our data. When you start
using indexed addressing this is a sensible
precaution against a loop getting out of control
and causing your program to overwrite itself.

ORG $1000

COUNT FCB 0

LOX #0

LOOP LDA TAB LE,X

We now alter the value in the X register:

TER X, D

ADDD #1

TFR D , X

This is an awkward way of incrementing X,
although it can be useful when we are
incrementing or decrementing by numbers
greater than two. We will look at the alternatives
to the method used here later in the course. The
last fragment of code increments the count and
checks to make sure that it is not 64 (in which case
the program is finished and there is no need to
loop again):

INC COUNT

LDB COUNT

CM PB #64

BLT LOOP

There are a number of ways of improving the
efficiency of this code. One of the most useful

598 THE HOME COMPUTER ADVANCED COURSE

