‘Assembler directives’ is a better name as this
explains their function — to direct the functioning
of the Assembler program. If these directives are
labelled, then the label will be translated by the
Assembler into the appropriate address — so we
may have, for example:

NUM1 FCBO reserving a single byte that will
be referred to as NUM1, with
initial value 0"

NUM2FCBO similar to the above

NUM3 FDB #A93B reserves two bytes for the 16-
bit number #A93B (#, the
‘hash’ sign, is often used by
6809 Assemblers as a sign
that the number is in

hexadecimal notation)

The following instructions load the values stored
in these locations into various registers:

DA NUM1 will load the eight-bit number stored at
the memory location represented by
NUM1 into accumulator A

KEVIN JONES

LDB NUM2 as above, loads NUM2 into
accumulator B

LDX NUM3

LDY NUM3 These instructions will load the 16-bit

LDS NUM3 numberin NUM3intothe X, Y, S, U and

LDU NUM3 D registers respectively

LDD NUM3

In a similar way, the eight- or 16-bit contents of a
register may be stored in a memory location by
using one of:

STA NUM1
STB NUM2
STX NUM3
STY NUM3
STS NUM3
STU NUM3
STD NUM3

Notice that when the accumulator is loaded from
NUM1, you actually copy NUM1 into the
accumulator without changing it; the store
operations function similarly.

The contents of two registers may be exchanged
(provided that they are the same size) by using the
EXG instruction. For example:

EXG A,B exchanges the contents of registers Aand B
EXG X,S exchanges the contents of registers X and S

The contents of one may be transferred to another
— for example: TFR Y,U copies the contents of Y
into U, To accomplish this, the two registers must
again be of the same size, both eight-bit or both
16-bit.

In order to write a program that actually does
something, let us introduce the ADD instruction,
which will add the contents of a memory location
to the contents of one of the accumulators. It takes
the form:

ADDA NUM1 meaning ‘add the contents of memory
location NUM1 into the A register,
leaving the A register containing the

result of the addition’

First we will add the two eight-bit numbers in
NUM1 and NUM2, putting the answer back in NUM1
and ignoring any overflow if their sum is larger
than an eight-bit number. We will then add the two
locations’ contents again, but this time obtaining a
16-bit result in NUM3.

First example:

LDA NUM1 copy first number into A
ADDA NUM2 add second number

STA NUM1 store answer back in NUM1
Second example:

LDB NUM1 copy first number into B

SEX convert the eight-bit number in B into
a 16-bit number in D

STD NUM3 copy D into NUM3

LDB NUM2 copy second number into B

SEX convert it to 16-bit number in D

ADDD NUM3 add the first 16-bit number from
NUM3 into D

STD NUM3 store the answer back in NUM3

THE HOME COMPUTER ADVANCED COURSE 539

