
order:

0,0,0,1,1,1,1,1,2,2,2,2,2,4,4,5,6,9,11,12

If we know the number of teams is 20, then the
quickest way to find the position of the score we
want is to split the array into two parts and search
only the part likely to contain the number we want.
Remember that sifting through large quantities of
data is likely to take far more time than simple
arithmetic operations such as dividing a number
by two. The algorithm for locating the score would
now look like this:

Find the array containing the scores
Read the number we want to search for
Find the length of the array
Find the midpoint of the array
Loop until the number is located

If the item at the midpoint is equal to the
number we are searching for, then the
number has been located
If not, see if the number sought is larger or
smaller than the number at the midpoint
If the number sought is larger than the
number at the midpoint, then find the
midpoint of the upper part of the array
If the required number is smaller than the
number at the midpoint, then find the
midpoint of the lower part of the array
(Repeat this until the number is located)

This can be formalised to:

BEGIN
Find the array of scores
INPUT NUMBER (to be searched for)
LOOP until the number is located

IF NUMBER = (midpoint)
THEN note position of midpoint
ELSE

IFNUMBER> (midpoint)
THEN find midpoint of upper half
ELSE find midpoint of lower half

ENDIF
ENDIF

END LOOP
IF NUMBEF is located

THEN PRINT position of midpoint
ELSE PRINT NUMBER NOT FOUND"

ENDIF
END

If you think through this program in pseudo-
language you will see that it cannot fail eventually
to locate the number being searched for if it exists
in the array. Let's develop this pseudo-language
until we can arrive at a working program. This
process of searching by repeated subdivision is
called a `binary search'.

A program in BASIC based on the pseudo-
language above is presented for you to try. It
creates an array and reads in the scores from a data
statement. It then prompts for the score to be
searched. If it finds the score, it prints the element
of the array the number was found in.

Basic Programming

computer systems, though there are occasions
when the criteria by which data is accessed are so
unpredictable that a pile is as good a data structure
asany.

A more organised data structure, and one much
easier for both people and computers to use, is
achieved when the data is organised according to a
recognised and simple system. A telephone
directory is a good example of a set of information
(names, addresses and telephone numbers) where
the name field is ordered according to simple rules
of alphabetic sequencing. The numbers
themselves are, to all intents and purposes,
randomly ordered, but the names — which are
more `meaningful' — are organised according to
easy-to-follow rules.

Inasmuch as we have thought about the internal
organisation of the data in our computerised
address book, the data is organised as a pile, with
one record being stored in name array element X,

street array element X and so on, and the next
record being stored in name array element X +1,
street array element X+1 and so on. Finding a
particular item of data — BILL SMITH, for example
— would therefore involve looking at the first
element in the name array and seeing if it was BILL
SMITH, looking at the second element and seeing if
it was BILL SMITH and so on until we had either
located the field or discovered that there was no
entry for BILL SMITH.

If the data we want to search for has already
been ordered into a recognisable structure, we can
see how it will simplify the search. Suppose you
have a database on football teams, and one of the
fields in the records is the score for a particular
week. A powerful database might allow you to
find which team or teams had scored 11 goals in
that week. Here is the array holding team scores
for the week in question:

1,6,2,2,1,9,0,0,2,1,4,11,4,2,12,5,2,1,0,1

It should be obvious that the scores are in team
order and not in score order. Twenty teams are
involved and only one team actually managed to
score 11 goals that week. This was the 12th team
entered in the array. With unstructured data like
this, the only way to find the information you want
is to look at the first element and see whether it was
11; if it was not, look at the next element to see
whether it was 11, and so on until either an 11 was
located or no element equal in value to 11 was
found.

If we analyse this data, we will see that there was
a total of 20 scores, ranging in value from 0 to 12.
This example is relatively trivial, and even if we
had to search through every item it would not take
long to discover that 11 was in the 12th element of
the array. But what if there were thousands of
elements in a large array? Searching through
numerous unstructured data items could slow
down a program to an undesirable extent.

The solution is to order the data first, so that
searches can take place far more quickly. Here is
the array of scores again, arranged in numerical

274 THE HOME COMPUTER COURSE

