
PLAN OF ACTION
Our examination of programming
techniques has so far concentrated on
documentation, and the need to make each
section of a program clear and
understandable. Here we look at the wider
implications of program design and
consider the questions that should be asked
before any code is written.

Program design is seen by those involved — the
designer/programmer and the user — as a grand
and formal exercise in applied problem-solving.
Unfortunately, the problems to be solved are
always assumed to be of the technical
programming kind — how to format the screen,
how to make this loop faster, where to fit
everything into RAM, and so on — whereas the
real problems are present from the start of the
project, and are usually created at the first
meeting of the user and the 'expert'. Users are
rarely very clear about the true nature of their
problems — they hope the expert will tell them
what the problem is and how to solve it — and
experts very often think they know the problem
and the solution before the user even begins to
state it. The result is bad initial communication,
leading to an incomplete description of the
problem and the user's requirements. Working
from this specification is bound to produce an
unsatisfactory system that the user may be
pressurised into accepting.

For home computing projects the programmer
is usually also the designer (or 'systems analyst')
and the consumer. This should mean that
communication problems are lessened
considerably. Nonetheless, as a combined user/
designer, you should always make the effort to
explain problems, solutions and requirements to
yourself as clearly as if you were talking to
another person.

Let's consider an imaginary user and his
problem: he's a keen aircraft modeller who also
owns a cassette-based microcomputer. He wants
to store fairly detailed descriptions of materials
used in the construction of each model that he
makes so that when working on later models he
can search his records for previous use of this kind
of glue, or that type of joint. What the designer
must therefore get from the user is a clear
statement of the following:

• The program function. This can start off as a
vague statement of intent such as 'It should store
my model records', but it must be refined by the
designer's persuasion and interrogation into
something more like a requirement specification,

374 THE HOME COMPUTER ADVANCED COURSE

such as 'It should store my descriptions of the
model and its construction and materials, as
typed in at the keyboard, and display them when I
type in the model's name, or some aspect of its
construction.' This states the user's needs rather
more clearly, and points to some of the specific
programming tasks involved (storing, searching,
indexing, retrieving, etc.).

• How the program will be used. Some of the
physical details of typical usage may be clear from
the function description, but these may not be
complete. For example, the user may not want
the model details displayed on the screen because
he works in a shed without a television set. In this
case, a 'hard copy' print-out of selected details
may be required.

• What it will look like — input and output
formats. The professional programmer will often
use pre-printed charts representing the screen to
draw each display that the user will see during
input/output phases. Such elaborations are not
often necessary for home use, although high
resolution graphics may be an exception to this.
Screen formats are a very important aspect of the
user interface — the interactions between user
and machine — and deserve the sort of close
attention and discussion that is sometimes given
to more obviously ergonomic aspects of
computing, such as the positioning of keyboards
and monitors, height of the table, and levels of
illumination, etc.

• How it should be organised — file and
program formats. The user may feel that he needs
to store at least 100 aircraft descriptions, and
anything less will be useless. On the other hand,
he may only ever build half a dozen more or less
standard models. The size of a program's data
files has serious implications for their format and
access methods. A serial scan through six model
descriptions on cassette taking, say, five minutes
may be quite acceptable to the user, whereas
waiting for 100 to be searched would be out of the
question. A solution might be to put the program
and description index file on one tape, and the
descriptions themselves on 20 other tapes
classified by aircraft type, for example.

The size of the program itself can also become
a problem: if the text input section requires a
complex text editor, if the program is fat with
menus and heavy with significant messages, if the
file-handling sections employ complicated
searching and indexing routines, then the
program may have to be split into several separate
programs in order to fit into the available RAM.

• What it should do — special procedures and
calculations. In the model aircraft example, these

(


