
68000 INSTRUCTIONS AND
ADDRESSING MODES

rn 1971 fntel introduced the 4004, which had 46 instructions. Later otr,
rntel came out with the 8008. This had 48 instructions. rn 1973 the
Intel B0B0 appeared wit.h 78 basic instrucEion types, giving well over
20o instructions. The year 1974 saw the release of the Motorola 6g00,
and within a further couple of years the Zilog z\o processor appeared
with 158 basic instruction types and around 700 instructions. Thä dawn
of rhe 1980s saw the release of the 68000. This processor has 56 basic
instruction mnemonics and over a thousand instructions!

A decade of microelectronic research has clearly produced some amazing
achievements. one of the most interesting points, as far as the 68000 is
concerned,. is that the number of instructions available has lncreased
greatly, with only a minor increase in the number of instruction
mnemonics. This has important consequences. First, the instruclion.set
is not hard to learn. Second, the instructions must be capable of
multiple addressing modes, of whlch the 68000 has 14. Additionally, the
68000 has the abiliry ro deal wirh five basic dara rypes. It is the
merging of these basic instruction mnemonics, addressing modes, and data
types that give the 68000 its large, yet simple to 1earn, instruction
repertoire.

rn this chapter we will look at the basic instructions Lhat are
available, together with the addressing modes which the inslructions may
variably gse. 0n1y an overview is presented, for reasons already
mentioned (see rntroduction). The emphasis is toward a companion to the
68000 so that anyone, wiLh some knowledge of u""erbly language
programming, can quickly assimilate the capabilities of the processor.

When discussing these topics it becomes important to knor+ how the
resultant instructions are actually presented to an assembler. Assembler
packages vary in the form of syntax that they will a11ow, and therefore
descriptions in this chapLer will relate to the McGraw-Hil1 assembler
documented in Chapter 14. This particular assembler was used to create
all the example programs given in this book. Clearly if some other
assembler package is used there will almost certainly be some synLax
changes required.

In particular it will be noticed, at least by those of you who have
looked also at a detailed t.ext on the 68000 using Motorola nomenclature,
that there appear to be less instrucLion types described (e.g., ADDI is
not llsted). The McGraw-Hi11 assembler is a fu11 imprementätion and,
therefore, all instructions do exist; it is simply that certain
instructions, listed by Motorola as being variations, have been included
here as a natural member of the parent insLruction. For example,
Motorolars ADDr lnstruction is simply an ADD instruction using immediate
data as the source operand.

t2

2.1 Addressing modes

Six basic addressing modes in the 68000 give rise to 14 actual modes.
The modes of addressing are shown in Fi-g.2.1, Eogether with the
appropriate assembler syntax. Not every addressing node can be used with
all instructions, though the homogeneity is remarkable.

}ODB sn{TAx

Inplied
Register

Imediate
Immedlate
Quick immedlate

Absolute
Short
Long

Register Direct
Data register
Address register direct

Register Indirect
Address register
Postincrement
Predecrement
Address register with offset
Register with index and offset

Progran Counter Relative
Address register with offset
Register with index and offset

sR, ccR, usP,

#n
#b

al6
a32

Dn
An

(An)
(An)+
-(An)
d 16(An)
d8(An, i)

d 16(PC)
d8(PC, i)

PC

lfotes:
b=3,4or8bits i =AnorDn
n = 8116, or 32 bits An = address register

d8 = 8 bit offset Dn = data register
d16 = 16 bi.t offset PC = current location
a16 = 16 bit address SR = status register
a32 = 32 bit address CCR = condition codes

USP = user stack ptr

Figure 2.1 68(n0 addreesing modes

13

Perhaps the major deviation is with respect to address registers as
operands. hlhen these registers are used within direct addressing modes,
bit or byte data types are never permi.tted. There are also some
instructions which are severely limited in their choice of operands. For
example, the Bcc (Branch) and DBcc (Decrement and Branch) instructions
may only have an absolute address as their operand. This absolute
address is normally specifled in terms of a label. The value entered
into the instruction opcodes will be an offset, so that. the instructions
provide relative addressing.

Note that there is also what is termed inherent addressing.
Instructions using this form of addressing mode require no operand-.
There are six instructionS which fall into this category (viz., N0p,
RESET, RTE, RTR, RTS, and TRAPV).

PROGRAM COUNTER RELATIVE ADDRESSING

A special mentj-on must be given to the h'ay in which the assembler will
handle this form of addressing. In princlple, program (counter) relative
addressing nodes are the same as address regist.er indirect h'ith offset
(or offset and index), and the overall syntax is therefore the same. The
difference, of course, is that the program counter (PC) is belng used
instead of an address register for the indirection.

However, the major purpose in using this particular form of addressing
is to obtain position independent code. The offsets given to the
instruction are, therefore, normally labels r+ithin the program. Clearly
t.he assembler should not allocate the value of the labe1 as being Lhe
offset; rather it should allocate the offset required to get from where
the program counter is at the moment to where the 1abel is. As such, the
assembler will manipulate the instructions in one of two ways. First, if
the offset expression sLarts with an integer, the absolute value of the
expressi.on will be allocated as the offset:

Opcode
4BFAlO40

Address Opcode
282^E 44FAOOL2

Instruction
1ea $1040(FC),a5

Second, if the offset expression starts with a symbol, the symbol will
be treated as a 1abel (whether it was or not; the assembler has no way
of knowing) and the true offset will be allocated:

Instruction
nove lab(PC),OCR

The actual value of rhe symbol (1abe1) tlabt is |2B2CZ, and 90012 is rhe
offset required to reach it from the given instruction.

Note that program counter relative addressing modes can never be used
as dest.ination operands.

- -- '-{f,t

l.
2.
3.

SOURCE AND DESTINATION OPERANDS

Instructions for the 68000 may require no operands at all, a single
source or destinatlon operand, both a source operand and a destinat.ion
operand, or (in one case only - BTST) two source operands. whenever tr{o
operands are required, the source operand is always specified first, and
separated from the destination operand by a comma (r). For example:

No operand: rts
Source operand: c1r (a0)
Source and destination operand: divs (a1)+,dl

The result of any operation involving two operands will be stored in the
destination operand effective address, if this is pertinent. source
operand effective address contents will not be changed.

This declaration order for the operands is normally very helpful and
readable. An- exception to this is in the cMP instruction. For example,TCMP.L Dl,D2t compares D2 against D1. If Dl is less than D2, it,i.
comparison will yield rhe condition GT (greater than; signed) or HI
(higher; unsigned).

2.2 Condition codes

rn the following descriptions of the 68000 instructions there are three
instructions (Bcc, DBcc, and scc) whlch use a set of conditional tests.
The tests are given tone/tr+o charactert mnemonics and the full
instruction mnemonic consists of the above names with tcc? repJ-aced by
the test mnemonic (e.g., BHI, BF, DBEQ, SNE, and so on). Eäch tesi
produces a true or false resull depending on the state of given
condition flags in the 68000 ccR register. The tests, their mnemonics,
and their interpretation, are as follows:

Mneoonic
.z (./MD

Test 1 * oD$4 Interpretation

T
F
HI
rs
ccj
csi
l{E
Ea
vc
VS

PL
MT

GE

LT
GT
LE

I
0
not (C).not(Z)
C+z
not(C)
c
not(Z)
z
not(V)
v
nor (t{)
N

not(l{ xor V)
NxorV
not(Z+(N xor V))
Z+(N xor V)

true (alvays)
false (alvays)
higher (unsigned)
less thatr or sane (unsigned)
carry clear (unsigned)
carrJr set (unsigned)
not equal
equal
overflov clear
overflou set
plus
minus
greater than or equal (signed)
less than (signed)
greater than l9,3a2JJ
less rhan or eqrial lSi/aa,l

L

15

fi

Some of Lhe above mnemonics have alternative mnemonics, in order to
improve their readability under given j-nstances (see Sec.2.4).

2.3 Condition code flag handling

The condition code flags (X, N, V, Z, and C) are manipulated, at various
times and in various ways, by the instruccion set of the 6g000. The
handling of these flags may seem a little irregular, and lndeed it is,
but the irregularity is not some strange quirk of the processor; rather
it is a positive phenomenon. In general, the condition codes are set
according to the value being sent to the destination operand. Thls is
also true of the operand in the TST instruction and the second operand
in the cMP inst.ruction, even t.hough these rdestinationf operands aie not
altered. A near general exception to this rule is in the use of address
registers as destination operands. rn this case the condition codes are
not altered. This enables the adjustment of stack poj.nters, and the
calculation of addresses to be performed without wiping out condition
flags set by a previous operation. However, note that the condition
codes are set when an address regi,ster is the tdestinationr register of
a CMP instruction (it would be a poor state of affairs if tÄey were
nor !).

The handling of the Z flag, in particular, is even more variable. The
extended operations (ABCD, ADDX, NEGX, SBCD, and SUBX) cause the Z flag
to be cleared if the result is non-zero, or left alone in all othei
cases. This means that at the end of a series of extended operations the
tlqg will only be set if all the resulrs were zero. For bit operations
(BCHG, BCLR, BSET, BTST, and TAS) rhe Z flag i.s ser according to the
state of the specified bit before the operation.

2.4 Alternative mnemonics

A set of alternative mnemonics exists withln the assembler to aid the
programmer both in terms of style and readability. First is the mnemonic
for texclusive-orr operations. There are two wldely used mnemonics for
this instruction and both are supported:

Staodard Alternative
EOR XOR

0n1y the mnemonic EOR is listed in the following descriptions of the
68000 instructions.

Second, there is the common confusion, especially with processors which
cat.er for signed and unsigned arithmetic, as to the true interpretation
of the rcarry-clearr and tcarry-sett conditional statements. As such the
assembler provides the following:

16

-.*

Standard Alternative
BCC, BCS BIIS, BLO
DBCC, DBCS DBHS, DBLO
scc, scs sHS, SLO

The.mnemonic part rHSr stands for rhigher or samet, and rLO, stands
for .r1overt. They differ from the tgreater or equalr (GE) and rless
thanr (LT) mnemonics in that they refer to conditions set after an
unsigned operation.

2.5 68000 instructions
There are 56 basi,c instructions for the 68000 processor. The assemblerallocates a further seven variations, bringing the total to 63instruction mnemonics. Each insEruction mnemonic is discussed brieflygiving, amongst other things, details of its addressing modes. Theinstructions are covered in alphabetical order for quick reference.
Appendix A contains a summary of the instructions, showing their effecc
upon the CCR f1ags.

References will be found to items called data qualifiers. These arequalifiers that can be given to cerLain instructions, which speclfy whattype of data size i,s to be used. For example, 1et us look ät the MovEinstruction. Ide can move bytes (B bits), words (16 bits) or long-words(32 bits). The same MOVE instructlon mnemonlc is used in all three
cases; iL is the qualifier which deLermlnes the actual instruction
operation. This gives rise to lhe folloi{ing three forms:

lovE.B I.ovE.n I.,IOVE.L

The quallfier t.Lt, and the additional qualifier r.St, may be found
also when looking at insEructions that use a labe1 as ih.i. operand(e.g., BSB - branch to subroutine). fn thi-s context, r.Lt stands forlong, and t.St for short. A labe1 addressed as being short must bewithin +127 bytes or -128 bytes of the current program counter position.
A long labe1 can be up to within +32767 or -32768 bytes of the current
posiEion. Short branch i.nstrucLions use less bytes of opcode, and
therefore i-t is worth specifying them as such if you know a label is inrange but that it is as yet unknown to the assembler (i.e., because it
is a fori+ard reference during pass 1). There is no need to specify aqualifier for backward references because the assembler will u1"uys- u"e
a short addressing mode wherever possible.

ABCD ADD DECIMAL wITH ExTEND

Addressing modes: -(An),-(An)
Dn, Dn

Flags affected: X N Z V C

Privileged instruction: no

Byle data size on1y. Adds two BCD digits
two BCD digits i.n destination byte.

ADD ADD

Addressing modes:

in source b1,te, wlth exLend, to

#n
a16

Dn
(An)
(An)+
-(An)
d16(An)
dB(An,i)
d16(PC)
dB(PC, 1)

,DN

,An

tn,
Dn,

a16
a32
(An)
(An)+
-(An)
d16(An)
dB(An, i

An, An
An, Dn

XNZVFlags affected:

Privileged instruction:

Regi sler An may not
source to destination.

desr ination for b)'te operations. Adds

no

be used as

l6

ADDQ ADD QUIoK

Addressing modes: Dn
An

aI6
a32
(An)
(An)+
-(An)
d16(An)
dB(An,i)

Flagsaffected: XNZVC

Privileged instruction: no

Register An may not be used as destination for bvte operations. Word and
long-word operations are identical. Adds data (1 to 8) to destinatlon.

ADDX ADD wITH ExTEND

Addressing modes: -(An),-(An)
Dn, Dn

Flagsaffected: XNZVC

Privileged instruction: no

Adds source, with extend, lo destination.

AND LoGIcAL AND

Addressing nodes: #n
a16
a32
Dn
(An)
(An)+
-(An)
d16(An)
dB(An,1)
d16(PC)
dB(PC, i)

#b,

,Dt

?__*.e---.--
--

#n,
Dn,

a16
a32
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

Register sR may not be used wlth long-word operations. ccR is least
significant byte of SR, and accessed by TAND.B #n,SRr. Logically ANDs
all bits of source with corresponding bits of desEination.

#n, SR

Flagsaffected: NZV

Privileged instruction:

ASR ARITHMETIc

Addressing nodes:

no, except for AND.V/ #n,SR

SHIFT RIGHT

al6 (no data qualifier)
a32
(An)
(An)+
-(An)
d 16(An)
d8(An,i)

i

il

ASL ARITHMETIc sHIFT LEFT

Addressing nodes: al6 (no data qualifier)
a32
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

#b,Dn (data qualifier used)
Dn, Dn

Flagsaffected: XNZVC

Privileged instruction: no

Data size is always word. Destination shi-ft is always by one bit when noqualifier is present, or by a count of up to 63. An i-mmediate shift
count can be given of 0 to 7 on1y. Zero signifies a shift of eight
places. Sets V flag if sign bit changes at any time during shift.

20

#b,Dn
DnrDn

Flagsaffected: XNZVC

Privileged instruction: no

(data qualifier used)

Data size is a1t^'ays word. Desti-nation shift is alvays by one blt when no
qualifier is present, or by a count of up to 63. An immediate shift
count can be given of 0 to 7 on1y. Zeto signifies a shift of eight
places. Sign bit is replicated.

Bcc BRANcHcoNDITIoNALLY

Addressing nodes: label

Flags affected: none

Privileged instructioo: no

Label may be declared short (.S) or long (.L). Byte or word offsets are
used.

BCHG BIT TEsT AND cHANGE

Addreseing nodes: a16
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

Flags affected:

Privileged instruction: no

when data register
long-word. Tests

d estination .

#n,
Dn,

I

ii

il

il

r!

Byte operations on1y, except
destination then data size is
j.overts the specified bit of

is destination. If Dn is
(setting Z f.Iag) and then

BCLR BIT TEsT AND CLEAR

Addressing nodes:

#n,
Dn,

#n,
Dn,

Flags affected: Z

Privileged inatructi,on:

a16
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

except vhen data register
size is long-word. Tests
of destination to one.

a16
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

Flags affected: Z

Privileged ioatruction:

Byte operations on1-y, except nhen data register is destination. If Dn is
destination then data size is long-word. Tests (setting Z f.7ag) and then
clears the specified bit of destination to zero.

BRA BRANCH ALWAYS

AddressirrS nodes: label

Flags affected: none

Privileged itrstruction: no

Label may be declared short (.S) or long (.L). Byte or sord offsets are
used.

BSET BIT TEsT AND sET

Addreasing nodes:

Byte operations on1y,
destination then data
sets the specified bit

izz
il

;i(
!,i

l---,

is desti.nation. If Dn is
(setti.ng Z flag) and then

BSR BRANcH To sUBRoUTINE

Addressing modes: 1abe1

Flags affected: none

Privileged instruction:

Label may be declared short
instruction and then branches

BTST BIT TEsT

Addressing nodes:

or long (.L). Pushes
byte or word offset.

no

(.s)
bya

address of next

#n,
Dn,

a16
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An , i.)
d16(PC)
d8(PC, i)

Flags affected: Z

Privil-eged instruction: no

Byte operations only, except r+hen
desLination then data size is
specified bit.

data regisLer is
long-word. Tests

destlnation. If Dn is
(setting Z flag) the

CHK cHEcK REcrsrER AGArNsr BouNDs
Äddressing nodes: #n

al6
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An , i)
d16(Pc)
d8(PC, i)

NZVC

,Dn

Flags affected:

Privileged itratruction:

23

Data size is word only. I,Jil1 generate an
zeto ot greater than operand contents.

exception if Dn is less than

CLR CLEAROPERAND

Addressing oodes: a16
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

Flagsaffected: NzvC

Frivileged itrBtruction:

Operand data size is cleared to zero.

CMP coMPARE

Addressing #n
a16
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An,i)
d 16(PC)
d8(PC, r)

AnrAn
AnrDn

Flagsaffected: NZvC

Privileged instruction:

24

#n.

al6
a32
(An)
(An)+
-(An)
d16(An)
d8(An, i)

i
I
t,i
ilti
r;

ii

Register An may not be used as destination for byte operations.subtracts source from destlnation but does not store the result.

CMPM coMPARE MEMoRY

Addressing modes: (An)+,(An)+

Flagsaffected: NZVC

Privileged instruction: no

Subtracts source from destinaEion but does not store the result. Not anextended operation.

DBcc DEcREMENT AND BBANcH CoNDITIoNALLY

' Addressing modes: Dnrlabel

Flags affected: none

* Privileged instruction: no

rf condition is not met, data register word is decremented, then ifresult is not -1, branches by word ofiset. (DBT is a 4-byte no-äp).- --

DBRA DEcREMENT AND BRANcH ALwAYs

Addressing nodes: Dn,1abe1

Flags affected: none

Privileged instructioo: no

Decrements data register word and then branches by word offset.

25

f
I

I
I

SIGNED DIVIDE

lddreseing nodes: #n
al6
a32
Dn
(An)
(An)+
-(An)
d16(An)
d8(An, i)
d16(PC)
d8(PC, i)

l'lagsaffected: NZvC

Pririleged itratructiotr: no

Divides destination long-word by source Lrord. Quotient is put in low
order word, remainder (same sign as dividend!) is put in high order
nord.

DWU UNsIGNED DIVIDE

Addresei-ng nodeg:

,Dn

#n
al6
a32
Dn
(An)
(An)+
-(An)
d r6 (An)
d8(An,i)
d16(PC)
d8(PC,i)

,Dn

I

li
tr
il
il

il
li

Flagsaffected: NZVC

Prlvlleged instruction: no

Divi.des destination long-word by source word. Quoti.ent
order word, remainder in high order word.

is put in 1ow

EOR Excr,usrva oB

Addressing oodes:

EXG EXcHANGE

Addressing oodes:

#n,
Dn,

Dn

a16
a32
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

#n, SR

Elrtsaffected; NZVC

kirileged itrstructloo: no, except for EOR.W #n,SR

Register SR may not be used with long-word operations. CCR is least
significanr byre of SR, and accessed by TAND.B #on$Rt. Exclusive ORs all
bits of source with corresponding bits of destination.

Flags affected:

NEGISTERS

An,Dn
Dn,Dn
An, An
DnrAn

none

h-vileged instruction: no

Long-word operations only. Exchanges complete contents of two registers.

EXT srcN ExTEND

Addreasing oodes: Dn

Elagsaffected: NZVC

Frivileged itrstructlon: no

Byte operations not allowed. Excends sign bit of low order hatf of
destination, through the entire high order half of destination

27

JMP JUMP

Addreesi.ng oodes:

Elags affected:

Frivil,eged iDatructioD :

sets progran counter to

a16
a32
(An)
dr6(An)
d8(An, i)
d 16(PC)
d8(PC, i)

none

no

destination address.

JSR JUMP TO SUBROUTINE

Addreesing uodee: a16

ü:,
d16(An)
d8(An, i)
d16(PC)
d8(PC, i)

Flags affected: none

hirileged inatruction :

Pushes address of next instruction, and sets prograo count€r to
destination address.

LEA LoAD EFrEcrryE ADDRESS

Addressing oodes: aL6
a32
(An)
d16(An)
d8(An, i)
d16(PC)
d8(PC, i)

Ela3s affected: none

hirileged ilstruction :

Puts the effective address of the source into the destination register.

,An

LINK LrNK srAcr
Addreesing nodes: An,#r-r

Flags affected: none

Privileged ilatructions

The contents of An are pushed onto
from the updated stack pointer.
is added to the stack pointer.

LSL u)crcAr, gnrrr LEFT

Addreesing oodee:

the stack. Register An is then loaded
Fina1ly, the sign-extended dispacement.

(no data qualifier)

(data qualifier used)

one bit when -no qualifier
imnediate shift count can be
of eight places.

(no data qualifier)

(data quallfier used)

Data size is alvays rrrord. Shift is always by
is present, or by a count of up to 63. An
given of 0 to 7 on1y. Zero signifi.es a shift

LSR I.oGICAL sHIFT RIGHT

Hlags affected:

Privtleged itrstruction:

Addreesing oodes:

Flags affected:

h.rilqe{ instruction:

a16
a32
(An)
(An)+
-(An)
d16(An)
d8(An, i)

#b,Dn
DnrDn

XNZVC

a16
a32
(Än)
(An)+
-(An)
d16(An)
d8(An, i)

#b,Dn
DnrDn

x!{zvc

I

i

I

L

Data si.ze i -s al u'avs wor:d . Shi.f t is alwat-s by one bil when no qualif ier
js present, or by a count of up to 63. An immedlale shlft count can be
given of 0 to 7 onlv. Zero signif.ies a shift of eight places.

MOVE MovE

Two categories of MOVE instruclion exi st; those that use a data
qualifier and those lhat do not.

1. MOVE instructions that require a data qualifier

Addressing modes: #n
a16
a32
Dn

' ' qlr

(An)
(An)+
-(An)
d16(An)
d8(An,i)
dr6(PC)
dB(PC,i)

Addressing modes: #n
a16
a32
Dn
(An)
(An)+
-(An)
d16(An)
dB(An,i)
d16(PC)
dB(PC,i)

aI6
a32
Dn

(An)
(An)+
-(An)
d16(An)
dB(An, i)

('k'l' An address regj sler may nol be u,qed as a source
ör destlnation operand if the data type is byte)

Flagsaffected: NZVC
(l*o flags are affected if
the destinaLion is An)

Privlleged instruction: no

2. MOVE instructions that do not use a data qualifier

, CCR

,SR

30

An,USP
USP, AN

Flags affected:

Privileged instruction:

Moving to CCR or SR is
significant byte is used to
always word. USP operations

aI6
aJz
Dn
(A")
(An)+
-(An)
d 16(An)
d8(An, i)

zvc
flags are affected jf
source is SR or USP)

yes, unless moving
from SR or
to CCR

always word. When moving to CCR only least
update condition codes. Moving from SR is
are always long-word.

SR'

XN
(No
the

MOVEM MovE

Addressing modes:

Flags affected:

MULTIPLE REGISTERS

a16
a32
(A")
(An)+
d 16(An)
d8(An, i)
d16(PC)
d8(PC,i)

, (reg-1ist)

(reg-1ist),

none

aI6
a32
(An)
-(An)
d 16(An)
d8(An,j.)

Privileged instruction: no

Data size is word or long-word. Register list can be any list of data or
address registers separated by a comma (no ranges allowed by assembler).

For example: M0VEM.L locstore, AlrA2,A3,D4,D6
Organization in memory is DO at lowest address, A7 at highest.

3l

MOVEP MOVE PERIPHERAL DATA

Addressing nodes: Dn'd16(An)
d16(An),Dn

Flags affected: none

Privileged instruction: no

Data size is word or long-vord only.
alternate memory locations. If address is
order half of data bus (68000 only; 68008

MOVEQ MovEQ

Addressi-ng nodes: #b,Dn

Flagsaffected: NZVC

Priwileged instruction: no

Moves data (-128 to +T27) to complete data

Bytes are transferred Co/from
even, transfer is on high

has 8-bit data bus).

register.

MULS SIGNED MULTIPLY

Addressing nodes: #n
a16
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An'i)
d16(Pc)
d8(PC,i)

Elagsaffected: NZVC

Privileged instruction: no

The lor.r order half of destination
word.

long-word is multiplied by source

rDn

32

MULU UNsIGNED

Addressing nodes:

MULTIPLY

#rr
a16
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An, i)
d 16(PC)
d8(PC, i)

Flagsaffected: NZVC

Privileged instruction: no

The low order half of destination
word.

long-word is multiplied by source

Flags affected:

DECIMAL WITH EXTEND

aI6
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

xNzvc
Privileged inatructioo: no

Byte data size only. Subtracts the th'o BCD digits of destination, with
extend, from zero.

NEG NEGATE

Addressing nodes: al6
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

,Dn

NBCD NEGATE

Addressing modes:

ä-__---

33

Flagsaffected: XNZVC

Privileged instruction: no

Subtracts the destination from zero.

NEGX NEGATE wITH ExTEND

Addressing modes: aI6
a32
Dn
(A")
(An)+
-(A")
d 16(An)
d8(An,i)

Flagsaffected: XNZVC

Privileged instruction: no

Subtracts the destination, wlth extend, from zero.

NOP No oPERATIoN

Addressing nodes:

Elags affected:

Pririleged instruction:

NOT oNs's ooMPLEMENT

Addressing nodes: a16
a32
Dn
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

NZVCElags affected:

Pririleged instruction:

s4

Inverts all bits of the destlnation.

OR LocrcAL oR

Addressing modes: #n
a16
^ra
Dn:
(An)
(An)+
-(An)
di6(An)
d8(An, i)
d16(PC)
dB(PC, i)

a16
a32
(An)
(An)+
-(An)
d16(An)
dB(An, i)

#n, SR

Flagsaffected: NZVC

Privileged instruction: no, except for OR.ht #n,SR

Register SR may not be used wlth long-word operations. ccR is leastsignificant byte of SR, and accessed by tAND.B'#n,SRr. Logicafty QRs aL1bits of the source with corresponding bits of destination]

PEA PUSH EF.FEcTIVE ADDREss

Addressing modes: a16
^2a
(An)
d 16(An)
d8(An,i)
d16(PC)
d8(PC,i)

Flags affected: none

Privileged instruction: no

Pushes the effective address of the source.

,Dn

#n,
Dn,

RESET nEsET EXTERNAL DDvrcEs

Addressing nodes: inherent

Flags affected: none

Privileged instructiotr: yes

Asserts the reset pin.

ROL RoTATE LEFT

Addressing nodes: a16
a32
(An)
(An)+
-(An)
d 16(An)
d8(An,i)

#b,Dn
Dn rDn

Flagsaffected: NZVC

Privileged instruction: no

(no data qualifier)

(data qualifier used)

Data size is always word. Rotate is always by one bit r+hen no qualifier
is present, or by a count of up to 63. An immediate rotate count can be
given of 0 to 7 only. Zero signifies a rotate of eight places. Does not
set extend flag.

ROR RoTATE RIGHT

lddressiog oodes: a16
. a32

(An)
(An)+
-(An)
d16(An)
d8(An, i)

#b'Dn
DnrDn

Flagaaffected: NZVC

Privileged instruction: no

36

(no data qualifier)

(data qualifier used)

Data size is always word. Rotate is always by one bit r^rhen no qualifier
is present, or by a count of up to 63. An immediate rotate count can be
given of 0 to 7 on1y. Zero slgnifies a rotate of eight places. Does not
set extend f1ag.

ROXL ROTATE LEFT THROUGH EXTEND

Addressing modes: aI6
a32
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

#b, Dn
DnrDn

XNZVC

(no data qualifier)

(data qualifier used)

Flags affected:

Privileged instruction: no

Data size is always word. Rotate is always by one bit when no qualifier
is present, or by a count of up to 63. An immediate fotate count can be
given of 0 to 7 on1y. Zero signifies a rotate of eight places. Rotates
through extend f1ag.

ROXR RoTATE RIGHT THROUGH EXTEND

Addressing nodes: a16
a32
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

#b, Dn

DnrDn

XNZVC

(no data qualifier)

(data qualifier used)

Flags affected:

Privileged instruction: no

Data size is always word. Rotate is always by one bit when no qualifier
is present, or.by a count of up to 63. An immediate rotate count can be
given of 0 to 7 onLy. Zero signifies a rotate of eight places. Rotates
through extend flag.

37

--r-

RTE RETURN rRoM ExcnprroN

Addressing oodes: inherent

Flagsaffected: XNZVC

Frivileged instructi-on: yes

Pops status register and program counter.

RTR RETURNAND REsroRE ccR

Pririleged instructioo: lo
Pops condltion code register and program counter.

RTS RETURN FRoM sUBRoUTINE

Addressing oodeg:

Flags affected:

Privileged instruction: no

Pops program counter.

SBCD suBTRAcr DEcTMAL wrrn EXTEND

Addreesing nodes:

Flags affected:

Addressing nodes:

Flags affected:

Privileged instruction:

inherent

XNZVC

inherent

none

-(An),-(An)
Dn,Dn

xNzvc
no

Byte data_size only. Subtracts two BCD digits in
from two BCD digits in destination.

sourcer with extend,

38

Scc sET coNDITIoNAL

Addressing modes: a16
a32
Dn
(An,
(An)+
-(An)
d 16(An)
dB(An,i)

Flags affected: none

Privileged instruccion: no

ByLe operations on1y. If condilion is true, sets dest-inatlon byte to
$Fl', else clears destination byle to zero.

STOP sroP

Addressing modes: #n

Flagsaffected: XNZVC

Privileged instruction: Yes

Loads slatus register and stops until interrupt or reset

SUB SUBTRACT

Addressing modes: #n
a16
a32
Dn
(An)
(An)+
-(An)
d16(An)
d8(An,i)
d16(PC)
dB(PC,i)

,Dn
,An

#n,
Dn,

a16
a32
(An)
(An)+
-(An)
d16(An)
d8(An,i)

39

I

An, An
An, Dn

Flagsaffected: XNZVC

Privileged instruction: no

Register An may not be used as destination
Subtracts source from destination.

for byte operations.

SUBQ sUBTRAcT QUIcK

Addressing modes:

#b,

Elags affected: X N

Privileged instruction:

Register An may not be used
long-word operations are
destination.

Dn

An
al6
a32
(An)
(An)+
-(An)
d 16(An)
d8(An, i)

zY c

no

as destination for byte operations. Word andidentical. Subtracts data (1 ro g) from

SUBX sUBTRAcT wITH EXTEND

Addressing nodes: -(An),-(An)
Dn, Dn

Flagsaffected: XNZVC

Pririleged itrstructioh: no

Subtracts source, with extend, from destination.

L
SWAP swAp DAIA

Addressing nodes:

Flags affected:

40

REGISTER HALVES

Dn

NZVC

Privileged iastruction:

Swaps low order word uith

no

high order word.

--\ I'

TAS TEST AND SET BIT ?

lddreesing nodes: a16
a32
Dn
(An)
(An)+
-(An)
dr6(An)
d8(An, i)

NzVC

no

Tests bit 7 of

#b

none

Privileged instruction :

Byte operations on1y.
then sets bit 7 to one.

TRAP TRAP

Addressing nodes:

Elags affected:

byte (setting N and Z flags) and

h"vileged instructiotr:

Immediate value is vector
exception.

no

between 0 and 15. Generates the specified TRAP

TRAPV rRAPoNovERFLow

Addressing mdes: inherent

Elags affected: none

Privileged itrstruction: no

If overflow flag (V) is set, generates a TRAPV exceprion.

41

-:=4*r

TST TEST

Addressing modes: aI6
a32
Dn
(An)
(An)+
-(An)
d16(An)
dB(An,i)

Flagsaffected: NZVC

Privileged instruction: no

TesLs the destination. Dest.inaL.ion is not- altered.

UNLK UNLINK

Addressing modes: An

Flags affected: none

Privileged instruction: no

St:rck pointerr is ioaderr from register An. Register An rs then loadedfrom lonq-word pu11ed off stack.

42

