68000 INSTRUCTIONS AND
2 ADDRESSING MODES

In 1971 Intel introduced the 4004, which had 46 instructions. Later on,
Intel came out with the 8008, This had 48 instructions. In 1973 the
Intel 8080 appeared with 78 basic instruction types, giving well over
200 instructions. The year 1974 saw the release of the Motorola 6800,
and within a further couple of years the Zilog Z80 processor appeared
with 158 basic instruction types and around 700 instructions. The dawn
of the 1980s saw the release of the 68000. This processor has 56 basic
instruction mnemonics and over a thousand instructions!

A decade of microelectronic research has clearly produced some amazing
achievements., One of the most interesting points, as far as the 68000 is
concerned, is that the number of instructions available has increased
greatly, with only a minor increase in the number of instruction
mnemonics. This has important consequences, First, the instruction .set
is not hard to learn. Second, the instructions must be capable of
multiple addressing modes, of which the 68000 has 14, Additionally, the
68000 has the ability to deal with five basic data types. It is the
merging of these basic instruction mnemonics, addressing modes, and data
types that give the 68000 its large, yet simple to learn, instruction
repertoire,

In this chapter we will 1look at the basic instructions that are
available, together with the addressing modes which the instructions may
variably wuse. Only an overview is presented, for reasons already
mentioned (see Introduction). The emphasis is toward a companion to the
68000 so that anyone, with some knowledge of assembly language
programming, can quickly assimilate the capabilities of the processor.,

When discussing these topics it becomes important to know how the
resultant instructions are actually presented to an assembler. Assembler
packages vary in the form of syntax that they will allow, and therefore
descriptions 1in this chapter will relate to the McGraw-Hill assembler
documented in Chapter 14, This particular assembler was used to create
all the example programs given in this book. Clearly if some other
assembler package is used there will almost certainly be some syntax
changes required.

In particular it will be noticed, at least by those of you who have
looked also at a detailed text on the 68000 using Motorola nomenclature,
that there appear to be less instruction types described (e.g., ADDI is
not listed). The McGraw-Hill assembler is a full implementation and,
therefore, all instructions do exist; it is simply that certain
instructions, listed by Motorola as being variations, have been included
here as a natural member of the parent instruction. For example,
Motorola's ADDI instruction is simply an ADD instruction using immediate
data as the source operand.

12

2.1 Addressing modes

Six basic addressing modes in the 68000 give rise to 14 actual modes.
The modes of addressing are shown in Fig.2.1, together with the
appropriate assembler syntax. Not every addressing mode can be used with
all instructions, though the homogeneity is remarkable,

MODE SYNTAX
Implied

Register SR, CCR, USP, PC
Immediate

Immediate #n

Quick immediate #b
Absolute

Short alé

Long a32
Register Direct

Data register Dn

Address register direct An

Register Indirect

Address register (An)
Postincrement (An)+
Predecrement -(An)
Address register with offset d16(An)
Register with index and offset d8(An,i)

Program Counter Relative

Address register with offset d16(PC)
Register with index and offset d8(PC,1i)
Notes:
b =3, 4 or 8 bits i = An or Dn
n = 8,165 70r 32 "bits An = address register
d8 = 8 bit offset Dn = data register
dl6 = 16 bit offset PC = current location
alé = 16 bit address SR = status register
a32 = 32 bit address CCR = condition codes
USP = user stack ptr

Figure 2.1 68000 addressing modes

13

Perhaps the major deviation is with respect to address registers as
operands. When these registers are used within direct addressing modes,
bit or byte data types are never permitted. There are also some
instructions which are severely limited in their choice of operands. For
example, the Bcc (Branch) and DBcc (Decrement and Branch) instructions
may only have an absolute address as their operand. This absolute
address is normally specified in terms of a 1label. The value entered
into the instruction opcodes will be an offset, so that the instructions
provide relative addressing.

Note that there is also what is termed inherent addressing.
Instructions wusing this form of addressing mode require no operands.
There are six instructions which fall into this category (viz., NOP,
RESET, RTE, RTR, RTS, and TRAPV).

PROGRAM COUNTER RELATIVE ADDRESSING

A special mention must be given to the way in which the assembler will
handle this form of addressing. In principle, program (counter) relative
addressing modes are the same as address register indirect with offset
(or offset and index), and the overall syntax is therefore the same. The
difference, of course, is that the program counter (PC) is being used
instead of an address register for the indirection.

However, the major purpose in using this particular form of addressing
is to obtain position independent code. The offsets given to the
instruction are, therefore, normally labels within the program. Clearly
the assembler should not allocate the value of the label as being the
offset; rather it should allocate the offset required to get from where
the program counter is at the moment to where the label is. As such, the
assembler will manipulate the instructions in one of two ways., First, if
the offset expression starts with an integer, the absolute value of the
expression will be allocated as the offset:

Opcode Instruction
4BFA1040 lea $1040(PC),a5

Second, if the offset expression starts with a symbol, the symbol will
be treated as a label (whether it was or not; the assembler has no way
of knowing) and the true offset will be allocated:

Address Opcode Instruction
282AE 44FA0012 move lab(PC),CCR

The actual value of the symbol (label) 'lab' is $282C2, and $0012 is the
offset required to reach it from the given instruction.

Note that program counter relative addressing modes can never be used
as destination operands.

14

SOURCE AND DESTINATION OPERANDS

Instructions for the 68000 may require no operands at all, a single
source or destination operand, both a source operand and a destination
operand, or (in one case only - BTST) two source operands. Whenever two
operands are required, the source operand is always specified first, and
separated from the destination operand by a comma (,). For example;

1. No operand: rts
2. Source operand: clr (a0)
3. Source and destination operand: divs (al)+,dl

The result of any operation involving two operands will be stored in the
destination operand effective address, if this is pertinent. Source
operand effective address contents will not be changed.

This declaration order for the operands is normally very helpful and
readable. An exception to this is in the CMP instruction. For example,
'CMP.L D1,D2' compares D2 against D1, If Dl 1is less than D2yt this
comparison will yield the condition GT (greater than; signed) or HI
(higher; unsigned).

2.2 Condition codes

In the following descriptions of the 68000 instructions there are three
instructions (Bcc, DBcc, and Scc) which use a set of conditional tests.
The tests are given ‘'one/two character' mnemonics and the full
instruction mnemonic consists of the above names with 'cc' replaced by
the test mnemonic (e.g., BHI, BF, DBEQ, SNE, and so on). Each test
produces a true or false result depending on the state of given
condition flags in the 68000 CCR register. The tests, their mnemonics,
and their interpretation, are as follows:

: = wo .

Mnemonic | Test + = O0LQ Interpretation

il 1 true (always)

F 0 false (always)

HI not(C).not(Z) higher (unsigned)

LS C+Z less than or same (unsigned)

CC not(C) carry clear (unsigned)

@S G carry set (unsigned)

NE not(Z) not equal

EQ Z equal

vC not (V) overflow clear

Vs v overflow set

PL; not(N) plus

MI N minus

GE not(N xor V) greater than or equal (signed)

LT N xor V less than (signed)

GT not(Z+(N xor V)) greater than [rjac/)

LE Z+(N xor V) less than or equal /j}}%nﬁ

15

Some of the above mnemonics have alternative mnemonics, in order to
improve their readability under given instances (see Sec.2.4).

2.3 Condition code flag handling

The condition code flags (X, N, V, Z, and C) are manipulated, at various
times and in various ways, by the instruction set of the 68000. The
handling of these flags may seem a little irregular, and indeed it isy,
but the irregularity is not some strange quirk of the processor; rather
it is a positive phenomenon. In general, the condition codes are set
according to the value being sent to the destination operand. This is
also true of the operand in the TST instruction and the second operand
in the CMP instruction, even though these 'destination' operands are not
altered. A near general exception to this rule is in the use of address
registers as destination operands. In this case the condition codes are
not altered. This enables the adjustment of stack pointers, and the
calculation of addresses to be performed without wiping out condition
flags set by a previous operation. However, note that the condition
codes are set when an address register is the 'destination' register of
a CMP instruction (it would be a poor state of affairs if they were
not!).

The handling of the Z flag, in particular, is even more variable. The
extended operations (ABCD, ADDX, NEGX, SBCD, and SUBX) cause the Z flag
to be cleared if the result is non-zero, or left alone in all other
cases. This means that at the end of a series of extended operations the
flag will only be set if all the results were zero. For bit operations
(BCHG, BCLR, BSET, BTST, and TAS) the Z flag is set according to the
state of the specified bit before the operation.

2.4 Alternative mnemonics

A set of alternative mnemonics exists within the assembler to aid the
programmer both in terms of style and readability. First is the mnemonic
for 'exclusive-or' operations. There are two widely used mnemonics for
this instruction and both are supported:

Standard Alternative
EOR XOR

Only the mnemonic EOR is listed in the following descriptions of the
68000 instructions.

Second, there is the common confusion, especially with processors which
cater for signed and unsigned arithmetic, as to the true interpretation
of the 'carry-clear' and 'carry-set' conditional statements. As such the
assembler provides the following:

16

Standard Alternative
BCC, BCS BHS, BLO
DBCC, DBCS DBHS, DBLO
SCC, SCS SHS, SLO
The mnemonic part 'HS' stands for 'higher or same', and 'LO' stands
for 'lower'. They differ from the 'greater or equal' (GE) and 'less

than' (LT) mnemonics in that they refer to conditions set after an
unsigned operation,

2.5 68000 instructions

There are 56 basic instructions for the 68000 processor. The assembler
allocates a further seven variations, bringing the total to 63
instruction mnemonics. FEach instruction mnemonic is discussed briefly
giving, amongst other things, details of its addressing modes. The
instructions are covered in alphabetical order for quick reference,
Appendix A contains a summary of the instructions, showing their effect
upon the CCR flags,

References will be found to items called data qualifiers., These are
qualifiers that can be given to certain instructions, which specify what
type of data size is to be used. For example, let us look at the MOVE
instruction. We can move bytes (8 bits), words (16 bits) or long-words
(32 bits). The same MOVE instruction mnemonic is used in all three
casesj it is the qualifier which determines the actual instruction
operation. This gives rise to the following three forms:

MOVE.B MOVE . W MOVE.L

The qualifier '.L', and the additional qualifier ',S', may be found
also when looking at instructions that use a label as their operand
(e.g., BSR - branch to subroutine). In this context, '.L' stands for
long, and '.S' for short, A label addressed as being short must be
within +127 bytes or -128 bytes of the current program counter position,
A long label can be up to within +32767 or -32768 bytes of the current
position. Short branch instructions use less bytes of opcode, and
therefore it is worth specifying them as such if you know a label is 1in
range but that it is as yet unknown to the assembler (i.e., because it
is a forward reference during pass 1). There is no need to specify a
qualifier for backward references because the assembler will always use
a short addressing mode wherever possible,

17

ABCD ADD DECIMAL WITH EXTEND

Addressing modes: -(An),~(An)
Dn,Dn

Flags affected: INZVC

Privileged instruction: no

Byte data size only. Adds two BCD digits in source byte, with extend,
two BCD digits in destination byte.

ADD apD
Addressing modes: #n
alé
a32
Dn
(An)
(An)+ mbe)
-(An) ,An
d16(An)
d8(An,1i)
d16(PC)
d8(EC,1)
alé
a32
#n, (An)
Dn, (An)+
~(An)
d16(An)
d8(An,i)
An,An
An,Dn
Flags affected: XN ZVC
Privileged instruction: no

to

Register An may not be used as destination for byte operations. Adds

source to destination.

18

ADDQ ADD QuUICK

Addressing modes: Dn
An
alé
a32

#b, (An)

(An)+
-(An)
d16(An)
d8(An,i)

Flags affected: XNZVC
Privileged instruction: no

Register An may not be used as destination for byte operations. Word and
long-word operations are identical, Adds data (1 to 8) to destination.

ADDX ADD WITH EXTEND

Addressing modes: ~(An),-(An)
Dn,Dn

Flags affected: XNZVC

Privileged instruction: no

Adds source, with extend, to destination,

AND LOGICAL AND

Addressing modes: #n
alé
a32
Dn
(4n)
(An)+ ,Dn
-(An)
d16(An)
d8(An,i)
d16(PC)
d8(PC,1)

19

al6

a32
#n, (An)
Dn, (An)+
-(An)
d16(An)
d8(An,i)
#n,SR
Flags affected: N'Z V€
Privileged instruction: no, except for AND.W #n,SR

Register SR may not be used with long-word operations. CCR is least
significant byte of SR, and accessed by 'AND.B #n,SR'. Logically ANDs
all bits of source with corresponding bits of destination.

ASL ARITHMETIC SHIFT LEFT

Addressing modes: al6é (no data qualifier)
a32
(An)
(An)+
-(An)
d16(An)
d8(An,i)

#b,Dn (data qualifier used)
Dn,Dn

Flags affected: XNZVC
Privileged instruction: no

Data size is always word. Destination shift is always by one bit when no
qualifier is present, or by a count of up to 63. An immediate shift
count can be given of 0 to 7 only. Zero signifies a shift of eight
places. Sets V flag if sign bit changes at any time during shift.

ASR ARITHMETIC SHIFT RIGHT

Addressing modes: alé (no data qualifier)
a32
(An)
(An)+
-(An)
d16(An)
d8(An,i)

20

#b,Dn (data qualifier used)
Dn,Dn

Flags affected: XNZVC
Privileged instruction: no
Data size is always word. Destination shift is always by one bit when no
qualifier is present, or by a count of up to 63. An immediate shift

count can be given of O to 7 only. Zero signifies a shift of eight
places. Sign bit is replicated.

Bcc BRANCH CONDITIONALLY

Addressing modes: label
Flags affected: none
Privileged instruction: no

Label may be declared short (.S) or long (.L). Byte or word offsets are
used.

BCHG BIT TEST AND CHANGE

Addressing modes: al6

a32
Dn

#n, (An)

Dn, (An)+
-(An)
d16(An)
d8(An,i)

Flags affected: Z
Privileged instruction: no
Byte operations only, except when data register is destination. If Dn is

destination then data size is long-word. Tests (setting Z flag) and then
inverts the specified bit of destination.

21

BCLR BIT TEST AND CLEAR

Addressing modes: al6

a32
Dn

#n, (An)

Dn, (An)+
-(An)
d16(An)
d8(An,1i)

Flags affected: Z
Privileged instruction: no
Byte operations only, except when data register is destination. If Dn is

destination then data size is long-word. Tests (setting Z flag) and then
clears the specified bit of destination to zero.

BRA BRANCH ALWAYS

Addressing modes: label
Flags affected: none
Privileged instruction: no

Label may be declared short (.S) or long (.L). Byte or word offsets are
used,

BSET BIT TEST AND SET

Addressing modes: alé

a32
Dn

#n, (An)

Dn, (An)+
-(An)
d16(An)
d8(An,i)

Flags affected: Z
Privileged instruction: no
Byte operations only, except when data register is destination. If Dn is

destination then data size is long-word. Tests (setting Z flag) and then
sets the specified bit of destination to one.

22

BSR BRANCH TO SUBROUTINE

Addressing modes:
Flags affected:
Privileged instruction:

Label may be

label

none

no

declared short (.S) or long (.L). Pushes address of next

instruction and then branches by a byte or word offset,

BTST BIT TEST

Addressing modes:

Flags affected:

Privileged instruction:

al6

a32

Dn

(An)
(An)+
-(An)
d16(An)
d8(An,i)
d16(PC)
d8(PC,i)

#n,
Dn,

no

Byte operations only, except when data register is destination, If Dn is

destination then
specified bit.

data

size is long-word. Tests (setting Z flag) the

CHK CHECK REGISTER AGAINST BOUNDS

Addressing modes:

Flags affected:

Privileged instruction:

#n

alé

a32

Dn

(An)
(An)+
-(An)
d16(An)
d8(An,i)
d16(PC)
d8(CPC;1)

,Dn

NZVC

no

23

Data size is word only. Will generate an exception if Dn 1is less
zero or greater than operand contents.

CLR CLEAR OPERAND

Addressing modes: alé
a32
Dn
(An)
(An)+
-(An)
d16(An)
d8(An,i)

Flags affected: NZVC
Privileged instruction: no

Operand data size is cleared to zero.

CMP COMPARE

Addressing modes: #n
al6
a32
Dn
(An)
(An)+ ,Dn
-(An) ,An
d16(An)
d8(An,1i)
d16(PC)
d8(PC,1)
al6é
a32
(4n)
#n, (An)+
-(An)
d16(An)
d8(An,i)
An,An
An,Dn
Flags affected: NZVC
Privileged instruction: no

24

than

Register An may not be used as destination for byte operations.
Subtracts source from destination but does not store the result.

CMPM COMPARE MEMORY

Addressing modes: (An)+,(An)+
Flags affected: NZVC
Privileged instruction: no

Subtracts source from destination but does not store the result, Not an
extended operation,

DBcc DECREMENT AND BRANCH CONDITIONALLY

Addressing modes: Dn,label
Flags affected: none
Privileged instruction: no

If condition 1is not met, data register word is decremented, then if
result is not -1, branches by word offset. (DBT is a 4-byte no-op).

DBRA DECREMENT AND BRANCH ALWAYS

Addressing modes: Dn,label
Flags affected: none
Privileged instruction: no

Decrements data register word and then branches by word offset,

25

DIVS SIGNED DIVIDE

Addressing modes:

Flags affected:
Privileged instruction:
Divides destination lon

order word, remainder
word .

#n

alé

a32

Dn

(An)
(An)+ ,Dn
-(An)
d16(An)
d8(An,i)
d16(PC)
d8(PC,1i)

NZVG
no

g-word by source word. Quotient 1is put in

low

(same sign as dividend!) is put in high order

DIVU UNSIGNED DIVIDE

Addressing modes:

Flags affected:
Privileged instruction:

Divides destination lon
order word, remainder i

26

#n

al6é

a32

Dn

(An)
(An)+ ,Dn
-(An)
d16(An)
d8(An,1i)
d16(PC)
d8(PC,1i)

NZVC
no

g-word by source word. Quotient is put in
n high order word.

low

e 1

EOR EXCLUSIVE OR

Addressing modes: Dn

al6
a32

#n, (An)

Dn, (An)+
-(An)
d16(An)
d8(An,i)

#n,SR
Flags affected: N'Z: ¥V C
Privileged instruction: no, except for EOR.W #n,SR
Register SR may not be wused with long-word operations. CCR is least

significant byte of SR, and accessed by 'AND.B #n,SR'. Exclusive ORs all
bits of source with corresponding bits of destination.

EXG EXCHANGE REGISTERS

Addressing modes: An,Dn

Dn,Dn

An, An

Dn, An
Flags affected: none
Privileged instruction: no

Long-word operations only. Exchanges complete contents of two registers.

EXT SIGN EXTEND

Addressing modes: Dn
Flags affected: NZVC
Privileged instruction: no

Byte operations not allowed. Extends sign bit of 1low order half of
destination, through the entire high order half of destination.

27

JMP gsump

Addressing modes: alé
a32
(4n)
d16(An)
d8(An,1i)
d16(PC)
d8(PC,1)

Flags affected: none
Privileged instruction: no

Sets program counter to destination address.

JSR JUMP TO SUBROUTINE

Addressing modes: alé
a32
(4n)
d16(An)
d8(An,i)
d16(PC)
d8(PC,1i)

Flags affected: none
Privileged instruction: no

Pushes address of next instruction, and sets program counter to
destination address.

LEA LOAD EFFECTIVE ADDRESS

Addressing modes: alé
a32
(An)
d16(An) ,An
d8(An,i)
d16(PC)
d8(PC,1)

Flags affected: none

Privileged instruction: no

Puts the effective address of the source into the destination register.

28

LINK LINK STACK

Addressing modes: An, #n
Flags affected: none
Privileged instruction: no

The contents of An are pushed onto the stack. Register An is then loaded
from the wupdated stack pointer. Finally, the sign-extended dispacement
is added to the stack pointer,

LSL LOGICAL SHIFT LEFT

Addressing modes: alé (no data qualifier)
a32
(An)
(An)+
-(An)
d16(An)
d8(An,1i)

#b,Dn (data qualifier used)
Dn,Dn

Flags affected: XNZVC
Privileged instruction: no
Data size is always word. Shift is always by one bit when no qualifier

is present, or by a count of up to 63. An immediate shift count can be
given of O to 7 only. Zero signifies a shift of eight places.

LSR LOGICAL SHIFT RIGHT

Addressing modes: alé (no data qualifier)
a32
(An)
(An)+
-(An)
d16(An)
d8(An,i)

#b,Dn (data qualifier used)
Dn,Dn

Flags affected: XNZVC

Privileged instruction: no

29

A

Data size is always word. Shift is always by one bit when no qualifier
is present, or by a count of up to 63. An immediate shift count can be
given of O to 7 only. Zero signifies a shift of eight places.

MOVE w™MoVE

Two categories of MOVE instruction exist; those that use a data
qualifier and those that do not.

1. MOVE instructions that require a data qualifier

Addressing modes: #n

al6 al6
a32 a32
Dn Dn

¥ hn An - k%
(An) (4n)
(An)+ s (An)+
-(An) ~(An)
d16(An) d16(An)
d8(An, i) d8(An,1)
d16(PC)
d8(pC,i) |

(** An address register may not be used as a source
or destination operand if the data type is byte)

Flags affected: NZVC
(No flags are affected if
the destination is An)

Privileged instruction: no

2. MOVE instructions that do not use a data qualifier

Addressing modes: #n
al6
a32
Dn
(An) sCCR
(An)+ ,SR
—(An)
d16(An)
d8(An,1i)
d16(PC)
d8(PC,i)

30

An,USP
USP, An

al6
a32
Dn

SR, (An)
(An)+
-(4n)
d16(An)
d8(An,i)

Flags affected: XNZVC
(No flags are affected if
the source is SR or USP)

Privileged instruction: yes, unless moving
from SR or
to CCR

Moving to CCR or SR is always word. When moving to CCR only least
significant byte is used to update condition codes. Moving from SR is
always word., USP operations are always long-word.

MOVEM MOVE MULTIPLE REGISTERS

Addressing modes: alé
a32
(An)
(An)+ ,{reg-list>
d16(An)
d8(An,i)
d16(PC)
d8(PC,1)
alé
a32
{reg-list>, (An)
-(An)
d16(An)
d8(An,i)
Flags affected: none
Privileged instruction: no

Data size is word or long-word. Register list can be any list of data or
address registers separated by a comma (no ranges allowed by assembler).
For example: MOVEM.L locstore, Al,A2,A3,D4,D6

Organization in memory is DO at lowest address, A7 at highest.

31

MOVEP MOVE PERIPHERAL DATA

Addressing modes: Dn,d16(An)
d16(An),Dn

Flags affected: none

Privileged instruction: no

Data size 1is word or long-word only. Bytes are transferred to/from
alternate memory locations. If address is even, transfer 1is on high
order half of data bus (68000 only; 68008 has 8-bit data bus).

MOVEQ MOVEQ

Addressing modes: #b,Dn
Flags affected: NZ VYV C
Privileged instruction: no

Moves data (-128 to +127) to complete data register.

MULS SIGNED MULTIPLY

Addressing modes: #n
al6
a32
Dn
(An)
(An)+ ,Dn
-(An)
d16(An)
d8(An,i)
d16(PC)
d8(PC,1)

Flags affected: NZVC
Privileged instruction: no

The 1low order half of destination long-word is multiplied by source
word.

32

MULU UNSIGNED MULTIPLY

Addressing modes:

Flags affected:
Privileged instruction:

The low order half of d
word,

#n

al6

a32

Dn

(An)
(An)+
-(An)
d16(An)
d8(An,i)
d16(PC)
d8(PC,i)

NZVC
no

estination long-word is multiplied by source

NBCD NEGATE DECIMAL WITH EXTEND

Addressing modes:

Flags affected:
Privileged instruction:

Byte data size only.
extend, from zero.

NEG

Addressing modes:

NEGATE

alé

a32

Dn

(An)
(An)+
-(An)
d16(An)
d8(An,i)

XNZVC
no

Subtracts the two BCD digits of destination, with

alé

a32

Dn

(An)
(An)+
~(An)
d16(An)
d8(An,i)

33

Flags affected: XNZVC
Privileged instruction: no

Subtracts the destination from zero.

NEGX NEGATE WITH EXTEND

Addressing modes: alé
a32
Dn
(An)
(An)+
-(An)
d16(An)
d8(An,1i)

Flags affected: XNZVC
Privileged instruction: no

Subtracts the destination, with extend, from zero.

NOP NO OPERATION

Addressing modes: inherent
Flags affected: none
Privileged instruction: no

NOT ONE’S COMPLEMENT

Addressing modes: alé
a32
Dn
(An)
(An)+
-(An)
d16(An)
d8(An,i)

Flags affected: NZVC

Privileged instruction: no

34

Inverts all bits of the destination.

OR LOGICAL OR

Addressing modes: #n
alé
a32
Dn*
(An)
(An)+ ,Dn
-(An)
d16(An)
d8(An,i)
d16(PC)
d8(PC,1)
alé
a32
#n, (An)
Dn, (An)+
-(An)
d16(An)
d8(An,i)
#n,SR
Flags affected: NZVC
Privileged instruction: no, except for OR.W #n,SR

Register SR may not be used with long-word operations. CCR 1is least
significant byte of SR, and accessed by 'AND.B #n,SR'. Logically ORs all
bits of the source with corresponding bits of destination.

PEA PUSH EFFECTIVE ADDRESS

Addressing modes: al6
a32
(4n)
d16(An)
d8(An,i)
d16(PC)
d8(PC,1i)

Flags affected: none
Privileged instruction: no

Pushes the effective address of the source.

35

RESET RESET EXTERNAL DEVICES

Addressing modes: inherent
Flags affected: none
Privileged instruction: yes

Asserts the reset pin.

ROL ROTATE LEFT

Addressing modes: al6 (no data qualifier)
a32
(An)
(An)+
-(An)
d16(An)
d8(An,i)

#b,Dn (data qualifier used)
Dn,Dn

Flags affected: NZVC
Privileged instruction: no

Data size is always word., Rotate is always by one bit when no qualifier
is present, or by a count of up to 63, An immediate rotate count can be
given of O to 7 only. Zero signifies a rotate of eight places., Does not
set extend flag.

ROR ROTATE RIGHT

Addressing modes: alé (no data qualifier)
a32
(An)
(An)+
-(An)
d16(An)
d8(An,i)

#b,Dn (data qualifier used)
Dn,Dn

Flags affected: NZV C

Privileged instruction: no

36

Data size is always word. Rotate is always by one bit when no qualifier
is present, or by a count of up to 63. An immediate rotate count can be
given of O to 7 only. Zero signifies a rotate of eight places. Does not
set extend flag.

ROXL ROTATE LEFT THROUGH EXTEND

Addressing modes: alé (no data qualifier)
a32
(An)
(An)+
-(An)
d16(An)
d8(An,i)

#b,Dn (data qualifier used)
Dn,Dn

Flags affected: XNzZzVC
Privileged instruction: no

Data size is always word. Rotate is always by one bit when no qualifier
is present, or by a count of up to 63, An immediate xotate count can be
given of O to 7 only. Zero signifies a rotate of eight places, Rotates
through extend flag.

ROXR ROTATE RIGHT THROUGH EXTEND

Addressing modes: alé (no data qualifier)
a32
(An)
(An)+
-(An)
d16(An)
d8(An,1i)

#b,Dn (data qualifier used)
Dn,Dn

Flags affected: X NZV-C
Privileged instruction: no
Data size is always word, Rotate is always by one bit when no qualifier
is present, or by a count of up to 63, An immediate rotate count can be

given of O to 7 only., Zero signifies a rotate of eight places. Rotates
through extend flag.

37

RTE RETURN FROM EXCEPTION

Addressing modes: inherent
Flags affected: INZVE
Privileged instruction: yes

Pops status register and program counter.

RTR RETURN AND RESTORE CCR

Addressing modes: inherent
Flags affected: ANZNC
Privileged instruction: no

Pops condition code register and program counter,

RTS RETURN FROM SUBROUTINE

Addressing modes: inherent
Flags affected: none
Privileged instruction: no

Pops program counter,

SBCD SUBTRACT DECIMAL WITH EXTEND

Addressing modes: -(An),-(An)
Dn,Dn

Flags affected: KNS VG

Privileged instruction: no

Byte data size only. Subtracts two BCD digits in
from two BCD digits in destination.

38

Scc SET CONDITIONAL

Addressing modes: al6
a32
Dn
(An)
(An)+
-(An)
d16(An)
d8(An,i)

Flags affected: none
Privileged instruction: no

Byte operations only. If condition is true, sets destination byte to
$FF, else clears destination byte to zero.

STOP stor

Addressing modes: #n

Flags affected: XNZVC
Privileged instruction: yes

Loads status register and stops until interrupt or reset.

SUB SUBTRACT

Addressing modes: #n

alé

a32

Dn

(An)

(An)+ ,Dn

-(An) ,An

d16(An)

d8(An,1i)

d16(PC)

d8(PC,1)
al6
a32

#n, (An)

Dn, (An)+
~(An)
d16(An)
d8(An,1i)

39

An,An
An,Dn

Flags affected: XNzZVC
Privileged instruction: no

Register An may not be used as destination for byte operations.,
Subtracts source from destination.

SUBQ SUBTRACT QUICK

Addressing modes: Dn

#b, (An)

Flags affected: XNZVC
Privileged instruction: no
Register An may not be used as destination for byte operations., Word and

long-word operations are identical. Subtracts data (1 to 8) from
destination,

SUBX SUBTRACT WITH EXTEND

Addressing modes: -(An),-(An)
Dn,Dn

Flags affected: XNZVC

Privileged instruction: no

Subtracts source, with extend, from destination.

SWAP SWAP DATA REGISTER HALVES

Addressing modes: Dn

Flags affected: NZVC

40

Privileged instruction: no

Swaps low order word with high order word.

TAS TEST AND SET BIT 7

Addressing modes: alé
a32
Dn
(An)
(An)+
-(An)
d16(An)
d8(An,i)

Flags affected: N Z V€
Privileged instruction: no

Byte operations only. Tests bit 7 of byte (setting N and Z flags) and
then sets bit 7 to one,

TRAP TRAP

Addressing modes: #b

Flags affected: none
Privileged instruction: no

Immediate value is vector between O and 15. Generates the specified TRAP
exception,

TRAPV TRAP ON OVERFLOW

Addressing modes: inherent
Flags affected: none
Priviieged instruction: no

If overflow flag (V) is set, generates a TRAPV exception,

41

TST TEST

Addressing modes:

Flags affected:
Privileged instruction:

Tests the destination.

UNLK UNLINK
Addressing modes:
Flags affected:

Privileged instruction:

Stack pointer 1is loaded from register An,

alé

a32

Dn

(An)
(An)+
~(An)
d16(An)
d8(An,i)

NZVEC

no

Destination is not altered.

An

none

no

from long-word pulled off stack.,

42

Register An is then loaded

S

s

T T T

