
DATA PROCESSING
Before the microcomputer was developed, all
computing was known as data processing. At that
time, the high cost of mainframe and
minicomputers limited their use to very large firms
and public bodies. The hardware needed special
air-conditioned environments, and required
trained staff to operate and maintain it. The
computers were invariably controlled by a Data
Processing (or DP) department, and no one could
gain access to the machine without the approval of
the Data Processing Manager.

The microcomputer revolution meant an
increase in accessibility. The micro, freed from the
constraints imposed upon mainframes and
minicomputers, could sit on an executive's desk,
where it would be constantly available to perform
whatever application was required. Data
Processing departments still exist in large
companies, and perform a wide variety of tasks.
These applications include financial modelling,
stock control, cost and management accounting,
production planning, payroll and personnel
records.

DEBUGGING
In its broadest sense, debugging is simply the
correction of errors — whether these errors are
mistakes in a computer program or malfunctions
in the hardware. In particular, though, the term is
used to refer to the systematic testing and
correction of a computer program.

The person credited with coining the term is
Captain Grace Hopper, who worked on the
electromechanical Harvard Mark II computer in
1945. The cause of a particularly elusive error in a
program was eventually traced to a moth that had
been hammered to death in one of the machine's
relay switches. When asked by a superior why
progress was slow, Captain Hopper explained that
she was 'de-bugging the machine'. From this
derives the word bug, which is simply an error in a
program's operation.

DECISION TABLE
A computer's usefulness is derived from its ability
to act on conditional statements. The simplest of
these is the BASIC IF . . . THEN statement, in which the
computer follows a set course of action if a
particular condition is met. All forms of computer
decisions can ultimately be reduced to this form.

A decision table simply indicates the actions to
be taken under various conditions. It is set up in
two columns — one for the conditions and the
other for the actions to be taken. The computer
then works through the first column until it finds
the entry that matches the required condition and
takes the action indicated by the second column.

Implementing a decision table in BASIC by any
means other than a collection of IF . . . THEN
statements would be a very involved process, so
machine code is generally used. The ON . . GOTO
structure is, however, a simple form of decision
table, in which the list of conditions consists of a
list of numbers, and the possible outcomes are all
GOTO statements.

DECISION TREE
Like a decision table, a decision tree is a collection
of conditions and specified actions. The difference
between the two is that in a decision tree the
computer does not need to search the entire list.
Instead, it searches an initial section of the list and
the resulting action statement then indicates the
next group of conditions to be searched. The effect
is like a tree -- the program starts at the trunk, and
each set of conditions that is met represents a split
into several branches.

DECLARATION STATEMENT
The BASIC language requires all array variables to
be DI Mensioned before use. Some other
programming languages insist on all variables
being 'reserved' in this way, with the user having to
specify whether they are integer, real, string or
double-precision variables. The program lines
that reserve variables (usually at the start of a
program) are called declaration statements.

There is no fundamental reason why arrays
must be declared, except for the fact that this
makes the system more efficient. When a DIM
statement is encountered, the BASIC interpreter sets
aside an area of RAM proportional to the size of
the array. Ordinary variables are then stored in
RAM adjacent to the array variables. If a DIM
statement was not used, each time the user
addressed the array using a higher index than
before, the operating system would need to move
all the other variables in memory to make
sufficient space.

It is good programming practice to simulate the
declaration of all variables at the start of a
program, in the order of frequency of use.
Thus, if your program features many loops that
use I as an index, the statement LET I = 0 in the first
line of the program will make it run faster by
ensuring that I is placed in the first position in the
table of variables.

408 THE HOME COMPUIER ADVANCED COURSE


