(lines 500 to 570 are the keyboard routine
that sets new values for a, b, i and |)

600 LET x=x+a: LET y=y+b

610 LET m=m-+i: LET n=n+j

620 GOTO 400

The only confusing point is perhaps line 410,
where the variables for bike one are set to those for
bike two, and a new variable,col, is introduced.
This is so that a single routine can be used for the
collision action, where x and y are simply used to
indicate the point at which the collision takes
place, and col sets the colour.

The routine for checking the keyboard has to be
fast, but we regretfully have to use IF . . . THEN
statements that are fairly slow. However, we can
use the fast IN command to read the keys. The
control keys chosen are Q and A, which control
upward and downward movement for bike one,
and P gnd ENTER for bike two. Left and right are
X C for bike one, and N and M for bike two.
(See page 366 for a full explanation of how blocks
of keys relate to bytes in memory.)

500 IF IN 64510= 190 THEN LET a=0: LET b=1
510 IF IN 65022= 190 THEN LET a=0: LET b=-1
520 IF IN 65278= 187 THEN LET a=-1: LET b=0
530 IF IN 65278= 183 THEN LET a=1: LET =0
540 IF IN 57342= 190 THEN LET i=0: LET j=1
550 IF IN 49150= 190 THEN LET i=0: LET j=-1
560 IF IN 32766= 187 THEN LET i=1: LET j=0
570 IF IN 32766= 183 THEN LET i=—1:LET j=0

All that remains is the collision routine, and the
updating of the scores. An expanding series of
concentric circles, centred on the point of impact
was chosen, with radii of four, six and eight pixels:

700FORd=1T03

710 CIRCLE BRIGHT 1; INK col; x,y,2+d*2
720 NEXT d

730 IF col=6 THEN LET p=p+1: GOTO 750
740 LET g=g+1

750 GOTO 100

This finishes the game, with the last statement
looping back to the initialising procedures at the
beginning. The game could, however, do with a
starting procedure to make it more friendly to use:

300 PRINT AT 10,5; INK 7; “PRESS ANY KEY TO
START”

310 IFINKEYS= " THEN GOTO 310

320 PRINT AT 10,5; * )

This gives you a break between consecutive
rounds. All that remains is to save the game to
cassette, preferably using SAVE “OnYerBike™ LINE 10
so that the game automatically runs as soon as it is
loaded.

The game could obviously be made more
exciting, with instruction screens, loading screens,
a one-player option with a strategy routine
controlling the other bike as we have suggested,
sound and better graphics. But certainly the latter
options would make the game unplayably slow. In
a future instalment we will rewrite this game in
machine code to demonstrate its full potental.

BASIC GAME/PROGRAMMING PROJECTS

This simplified flowchart shows
the program structure with only
one player. Each process is
repeated in the full two-player
game

LIZ DIXON

THE HOME COMPUTER ADVANCED COURSE 633



