
Explode !
update score

Restart

Set Player 1
Move

Find
legal position

Increment
score

There are many ways of
implementing a one-player
version of this game. The changes
we suggest make it possible to
choose between the one- and
two-player versions at the start of
every game. It isn't difficult to
invent satisfactory algorithms for
playing this game, but it's
extremely difficult to implement
them in BASIC without slowing
down the game considerably.
Make the following changes to
the program:

20 LET keybd-500:LET
pt--1 :LET umoved-O:
RANDOMIZE

260 PRINT AT 10,5;No. of
Players (1/2) ?*

270 LET a$-1NKEY$:IF
a$<>"1" AND a$< >"2"
THEN GO TO 270

2801F INKEYS< > '2" THEN
LET keybd-440

These lines give the user the
choice of game types, and
implement that choice by
accessing either the one-player
stratagem between lines 440 and
460, or the standard two-player
version between lines 500 and
570. Our strategy is contained in
these lines:

430 GOTO keybd
440 LET pt-SON (RND-0.5): IF

unloved-0 THEN LET a-prj:
LET b-pri: LET umoved-O

450 IF POINT (x+a,y+b)< >1
THEN GOTO 540

460 LET pt-SON (RND-.5): LET
a-apt: LET b-b*pt: LET d-a:
LET a-b: LET b-d: IF POINT
(x+a,y+b)< >1 THEN GOTO
540

490 LET a--a: LET b--b: GOTO
540

5401F IN 57342-190 THEN LET
i-0: LET j-1: LET umoved-1
and similarly add:
: LET umoved-1
to the end of lines 550 to 570

One-Player Option
This simplified flowchart shows
the program structure with only
one player. Each process is
repeated in the full two-player
game

BASIC GAME/PROGRAMMING PROJECTS

1

(lines 500 to 570 are the keyboard routine
that sets new values for a, b, i and j)

600 LET x=x+a: LET y=y+b
610 LET m=m+i: LET n=n+j

620 GOTO 400

The only confusing point is perhaps line 410,
where the variables for bike one are set to those for
bike two, and a new variable,col, is introduced.
This is so that a single routine can be used for the
collision action, where x and y are simply used to
indicate the point at which the collision takes
place, and col sets the colour.

The routine for checking the keyboard has to be
fast, but we regretfully have to use IF. . THEN
statements that are fairly slow. However, we can
use the fast IN command to read the keys. The
control keys chosen are Q and A, which control
upward and downward movement for bike one,
and P and ENTER for bike two. Left and right are
X ancr C for bike one, and N and M for bike two.
(See page 366 for a full explanation of how blocks
of keys relate to bytes in memory.)

500 IF IN 64510= 190 THEN LET a=0: LET b=1
510 IF IN 65022= 190 THEN LET a=0: LET b= —1
520 IF IN 65278= 187 THEN LET a= —1: LET b=0
530 IF IN 65278= 183 THEN LET a=1: LET il,=0
540 IF IN 57342= 190 THEN LET i=0: LET j=1
550 IF IN 49150= 190 THEN LET 1=0: LET j= —1
560 IF IN 32766= 187 THEN LET 1=1: LET j=0
570 IF IN 32766= 183 THEN LET i= —1 LET j=0

All that remains is the collision routine, and the
updating of the scores. An expanding series of
concentric circles, centred on the point of impact
was chosen, with radii of four, six and eight pixels:

700 FOR d=1 TO 3
710 CIRCLE BRIGHT 1; INK col; x,y,2+d*2
720 NEXT d
730 IF col=6 THEN LET p=p+1: GOTO 750
740 LET q=q+1
750 GOTO 100

This finishes the game, with the last statement
looping back to the initialising procedures at the
beginning. The game could, however, do with a
starting procedure to make it more friendly to use:

300 PRINT AT 10,5, INK 7; "PRESS ANY KEY TO
START"

310 IF IN KEYS= "" THEN GOTO 310
320 PRINT AT 10,5;"

This gives you a break between consecutive
rounds. All that remains is to save the game to
cassette, preferably using SAVE "OnYerBike" LINE 10
so that the game automatically runs as soon as it is
loaded.

The game could obviously be made more
exciting, with instruction screens, loading screens,
a one-player option with a strategy routine
controlling the other bike as we have suggested,
sound and better graphics. But certainly the latter
options would make the game unplayably slow. In
a future instalment we will rewrite this game in
machine code to demonstrate its full potental.

One Hand Clapping
Fitting Inmoving in a straight line until that
In the one-player version thegenerates an illegal move, or
computer is Player 1. ThePlayer 2 moves. In the latter case,
program section that checksthis move is mirrored or
Player l's command keys forduplicated, and then checked for
input is bypassed, and thelegality. Whenever an illegal
algorithm in the code givenPlayer 1 move is generated, the
allows Player 1 to continue program looks for legal moves at

right-angles to the illegal move
direction; ii none is found then
the position is hopeless

/Player IYES
collision,.-.

' •?
•e

NO

Player 2YES
collision..

NO

Plot new
positions

.......

Is
iti or 21 Player
players

? 047'

2 PlayerDid
Player 2

Check Player 1), move
•-•?	.

keys
•or.• •

NO

Check Player 2 4
keys

Tyr wr WereerfratIs
Pla

y
er 1

Set new positions'YES
%.,7n A. A

INITIALISE;$
Draw screen,

Set initial
variables‘e

rfeTt Mrs' •• •••

Is
there a

YES
Draw collision

,	collision•graphics
?

' •

0

PLOT position

Read keyhoard
for change
in directione.

THE HOME COMPUTER ADVANCED COURSE 633

