
THE RECORD. ARE YOU SURE? KY/N) should always
be provided. In a word processor, a similar
message would be: THE `SAVE' COMMAND WILL NOT
KEEP A BACKUP OFTHE OLD DOCUMENT. IS THIS OK?
(Y/N).

Error handling (trapping and reporting) should
be considered in the design of a program wherever
there is a possibility of wrong data input, wrong
menu .choice, wrong commands and whenever
data is to be modified or saved, especiall y if the
save involves writing over old data.

You must pay attention to security — what
happens to the program or data if there is a fatal
error (such as a power failure). The program
designer should consider how much data it is
possible to lose and devise methods of recovering
as much as possible or making the remaining data
usable. One rather sophisticated word processor
incorporates a program called RECOVER so that if
there is a catastrophic error (a power failure, for
example, or switching off the computer before
saving the document), almost nothing is lost. Such
advanced programming techniques, sadly, are
beyond the scope of this course. The point is,
though, to make your programs as secure as
possible by anticipating all possible fatal errors
beforehand (that can be reasonably dealt with),
and writing routines designed to cope with them.

Adaptability, the ease with which the program
can he customised, is also important. We have
touched on this topic a number of times already.
At the simplest level, always leave plenty of room
between line numbers (in BASIC) and incorporate
plenty of empty BEMs that can be filled later with
statements and GOSUBs if necessary. When
creating arrays, at least one redundant array
should be built in to allow for future expansion. It
is a cardinal rule of program writing that future
requirements cannot be anticipated. The only
thing certain is that a good program can always be
made better, and making it better is likely to mean
writing more code.

Basic Flavours
See the program on page 318 for the
Spectrum version of lines 1300 to 1370, and
the Basic Flavours box for the I X81 version.
On the Spectrum, lines 3750 tc 378C may
cause problems because keys 'epeat if held
down for more than a fraction of a second. The
Spectrum handbook recommends that this
type of INKEYS loop contain an extra line to
avoid this:

3755IFINKEYS <> THENGOT03755

Sinclair BASIC supports VAL(AS1, but will
crash the program if the first character of AS
is non-numeric; in this program the problem
can be avoided by:

3790 LET CH0l CODE AS-48

bit this is not a complete solution — it works
oily when AS is a single character (as it must
be in the program). Sinclair BASIC does net
support ON... GOSUB, but it does allow you
tc write GOSUB (numeric expkession) as well as
si mply 30SUB (line number); line 4010,
therefore, may be replaced by

aBasic Programming

real address book expects you to `PRESS 1' to find a
name. Nevertheless, a good user image involves
well designed screen layouts and a consistent
pattern to the operations. Prompts should always
appear in the same position on the screen (some
well known word processors, for example, display
some prompts on the top line of the screen and
some on the bottom line, apparently at random).
A program with a good user image will also inform
the user at any time where he is in the program. If
you are in the ADDREC mode, there should be a
message always visible to tell you this. If you have
just entered a field (to add to a new record), there
should be a message to say, for example, HIT
RETURN IF ENTRY IS CORRECT, ELSE HIT ESCAPE
(which brings us to the important subject of error
recovery and reporting, which we will come to
later).

Ideally, all formatting should appear on the
screen, so that, for example, the record displayed
on the screen will be of the same format as a record
printed out by the printer. Many commercially
available pieces of software incorporate `help
menus' which will tell you what to do next if you're
not sure.

The user image of a program is best when it is
concrete — a piece of typing paper or an index
card — rather than abstract with `sub-files',
`buffers' and so on. Many commercial database
programs suffer in this respect; the user has
constantly to keep in mind that certain pieces of
information are in sub-files or temporary, hidden
fields, These factors tend to make the use of such a
program more of an intellectual burden.

Error recovery is also an important subject.
What happens, for example, if you have just
entered someone's name but realise that you made
a typing error? Will you have to go ahead and then
call MODREC to correct it, or will the program give
you the option to `quit' before you go any further?
Most versions of BASIC will report errors in the
entering of a program, either when the erroneous
line is entered, or when the program is run.
However, this is not part of the `user interface'.
BASIC does include a number of messages that re-
prompt the user for a correct entry if an incorrect
one is made (for example, the REDO prompt if an
unsuitable entry is made in response to an INPUT
statement).

Handling errors has two facets — error
reporting and error recovery. One well known
word processing program, for example, has good
error reporting but poor error recovery; if you
create a long document and try to save it on a disk
that is already nearly full, the program gives you
the helpful message DISK SPACE EXHAUSTED. It
does not, unfortunately, allow the user to recover
from this error — a new disk cannot be formatted
without first destroying the text that you may have
spent hours typing in!

Any operation performed by the user that
could result in the loss of data (MODREC, for
example) should always be queried before
execution. Messages such as THIS WILL DESTROY

356 THE HOME COMPUTER COURSE


