
MACHINE CODE/INTRODUCING 6809 CODE

HIGHLY PROCESSED
CODE
Our machine code course continues with
the first in a series of articles that takes a
close look at the Assembly language of the
6809 processor, which is used in the Dragon
and Tandy Color home computers. We
begin with an explanation of the role of the
registers in the functioning of the processor.

A microprocessor can be regarded as having three
main components: the registers, which are parts of
memory inside the processor; an ALU (arithmetic
and logic unit) where certain simple mathematical
operations can be performed on the data stored in
the memory; and a control unit that makes
everything happen in the right sequence at the
right time.

At its lowest level of operation, the
microprocessor responds to voltage signals
applied at some of its external connections to
change its internal state (the contents of its
registers) or to send and receive other signals. By
representing the presence of a voltage as a one and
its absence by a zero, we can think of these signals
— travelling back and forth between the processor
and memory, or within the processor itself — as
numbers in binary notation. In this way, we can
program the processor by applying a sequence of
numbers as instructions for it to act on. The very
lowest level of programming, therefore, involves
thinking in terms of binary (or hexadecimal)
numbers. It requires a knowledge of the effect of
each number, or instruction code, on the
processor.

An eight-bit processor, like the 6809, can send
and receive binary numbers with eight bits, which
gives a range of decimal numbers between 0 and
255. Many of the numbers are used to refer to
addresses of memory locations, which on most
eight-bit processors are given as 16-bit numbers
(allowing for a range of memory locations
between 0 and 65535). Of course, when dealing
with these numbers, the processor is capable of
transferring them only eight bits at a time.

6809 REGISTERS
The registers in a processor can take many forms,
depending on their particular functions. Some are
reserved for the internal use of the processor and
cannot be accessed by the programmer. There are
four main 6809 registers that the machine code
programmer will use a lot.

The most commonly used register is the
accumulator. This is where most of the data being
used is stored and manipulated. For example, the
usual function performed by an Assembly

language ADD instruction is to add the contents of a
specified memory location to the contents already
stored in the accumulator. Thus, a new value will
'accumulate' in this register.

The index register is used to modify addresses
so that we can step through tables and lists of data
easily. When an instruction refers to a memory
location using indexed addressing then the
contents of this register are added on to the
address given in order to specify the effective
address of the data required. To step through a
table of data, we have only to refer to the base
address (of the first item of the table) and keep
incrementing the index register. As the values
stored in this register are normally addresses,
index registers are generally 16 bits long, rather
than eight.

The stack pointer is the register that indicates
the location of the top of the stack, which is a
convenient way of storing data and retrieving it
quickly. The stack is used when it is necessary to
save the internal contents of the processor (for
example, when a subroutine is called) so that they
can be restored later. The contents of some, or all,
of the registers can be 'pushed onto' the stack and
then 'pulled off' later when control returns to the
main program. The stack pointer simply tells the
processor the location of the last item put into the
stack and where it can save or find the next item.
Because they also refer to addresses in memory,
stack pointers are generally 16 bits long.

The fourth register is very important, although
its function is automatic most of the time. This is
the program counter, which should always contain
the address where the next instruction is stored.
The processor goes to the location specified by the
register, fetches the contents, interprets their
meaning and acts on that instruction. Normally,
the program counter will automatically be
incremented as instructions are carried out, so that
the instructions are fetched in sequence. Altering
the contents of the program counter (by storing a
new value there, or adding to or subtracting from
the old value) will change the course of the
program. In other words, this acts like a GOTO
instruction, although at this level it would be
referred to as a Jump (JMP) if a completely new
address was provided, or a branch (BRA) if the
current address was altered.

There is a fifth type of register, although it does
not operate in the same way as the others. This is
the condition code register, which is best thought
of as a collection of individual bits, each
representing some feature of the state of the
processor. For example, one of these bits is used to
signify to the processor whether the number

518 THE HOME COMPUTER ADVANCED COURSE


