
Hi-Res Routine
This performs three different
tasks. It sets up the colour
screen information, clears
the bit map area, and sets
and resets the hi-res register
bits - dependent on the state
of the flags, HRSFLG and
CLRFLG

ENTER

,.._
..

Is
HRSFLGN

Y

COMMODORE 64/MACHINE CODE

PIXEL PLOTTING
We begin a series of articles exploring
graphics applications using 6502 and Z80
machine code on the more popular home
computers. Here, we discuss the use of 6502
Assembly language to access the
Commodore 64's high resolution screen.
nINII

The various steps and procedures involved in
Commodore high resolution graphics have been
thoroughly explored on page 254: we must first
switch the Video Interface Chip (VC) to high
resolution mode, and change the character set
base address pointer; the block of eight Kbytes
starting at location 8192 that will hold the screen
memory map must be cleared; and the normal
screen memory map (locations 1024 to 2033 —
$0400 to S07E7), which is now to be used to hold
screen colour information, must be initialised.
This last task can be complicated in multi-colour
displays, but is straightforward here since we shall
have only one background colour on the screen.

The program will allow switching into and out
of high resolution mode, and then perform all the
necessary calculations to plot a point on the high
resolution screen. So the first part of our program
will concern itself with the two important tasks
that have to be carried out before the high
resolution screen can be used: the colour
information has to be put into each of the normal
screen locations, and the eight Kbyte bit map has
to be cleared.

To allow the same routine to be called when
entering or leaving high resolution mode, a flag
called HRSFLG will be used. In addition, we may
not always wish to clear the bit map on entering
high resolution mode, especially if we wish to leave
a previously drawn shape on the screen. In order to
signal whether we wish to clear the screen, we will
make use of a second flag called CLRFLG. The
flowchart shows how these two flags will be used
within the machine code routine.

Let's now consider the relatively
straightforward task of accessing memory blocks
of 256 bytes or less using a machine code loop.
The following piece of code places the number $03
into each location from the BASE address to
BASE+255 (a total of 256 locations in all) using
absolute indexed addressing (see page 196).

LDY $00

LDA $03

NEXT STA BASE,Y

D EY

BNE NEXT

Note that using this technique BASE is accessed
first, but the rest of the block is accessed from

BASE+255 downwards to BASE+1. Our program
calls for us to access more than one 256-byte block
of memory, and in order to do this we must use
another form of addressing known as post-
indexed indirect. This method uses the zero page
to calculate addresses anywhere in memory. Most
of the zero page is used by the Commodore 64's
operating system, but there are a few free bytes set
aside for use by the machine code programmer.
Two such bytes are 251 and 252 ($ FB and $ FC). In
this method of addressing, the computer assumes
that the lo-byte of the address is held in the zero
page location specified and the hi-byte is held in
the next zero page location. Thus, an instruction
such as STA ($FB),Y, where SFB and $ FC contain $00
and $20, and Y contains $04, calculates the
required address as follows:

In order to access an entire 256-byte block of
memory, a similar method to the one just
described could be used. The power of this
method of addressing lies in our ability to access
the hi-byte of the BASE address. Incrementing this
hi-byte by one means that the BASE address has
actually been increased by 256 (i.e. to the start of
the next block of memory). We can apply this
technique to the tasks of placing colour
information into the normal screen area and
clearing the bit map area.

The screen area runs from $0400 to 507E7. This
means that it consists of three blocks of 256-bytes
and a remainder of SE7 bytes. The block of
Assembly language labelled "Colour Screen
Area" on page 339 makes use of post-indexed
indirect addressing to place the colour
information into each byte. Use is made of the
variables SCBLO and SCBH I — the lo- and hi-bytes
of the normal screen start address — and SCBLK
and SCREM — the number of 256-byte blocks and
the remainder, respectively. PTR is the zero page
location used to store the lo-byte of the base
address.

CALCULATING PIXEL POSITIONS
The second part of our machine code routine is
concerned with the calculation of the bit in the bit
map area corresponding to a given (x,y) co-
ordinate. For the high resolution screen,

r
Clear

Bit Map
Area

Set VIC
Register

Bits

Reset
Regi:

Bit:

EXIT

A$O7I
$2000

Colour
Screen

$04
—0

±S2001---
Area

S2002
52003

SFE 30,A752004N
Is

CLRFLG $OO10

SF(- 1 $20

STA(SFB),Y
?

$2000+ $04= $2004
Y

THE HOME COMPUTER ADVANCED COURSE 337

