own imagination conjuring up a picture based on a
textual description. However, the rise in the
popularity of adventure games is almost certainly
attributable to the enhanced visual appeal that
graphics give, and, although some recent micro
games use only simple pictures to enhance the
text, others attempt to make the game visual.
In our programming project we shall be looking
at the techniques involved in programming an
adventure game. During the project, you will be
given sections of a listing to an adventure game
called Digitaya, which will build into a complete
program. In this game, the player is cast as an
‘electronic’ agent given the task of descending into
a microcomputer to locate and rescue the
mysterious Digitaya from the clutches of the
machine. There are many dangers and difficulties
along the way and you have to use all your
knowledge of computers to good effect to escape
unharmed. The program is, as far as possible,
written in ‘standard’ Basic, with ‘Flavours’ given
where appropriate. Therefore, provided you have
sufficient memory capacity, the program will run
on your computer. As we are going to discuss the
various programming techniques in detail, it
would be difficult not to give away many of the
secrets of the game, and this would spoil, to some
extent, the pleasure of playing it when it is
complete. We will, therefore, construct a shorter
game called Haunted Forest, in parallel with
Digitaya, which will demonstrate the techniques
and algorithms used to build the larger game.

MAKING A MAP

The starting point for the design of our adventure
game is to construct a map of the fantasy world
that we are imagining. On this map, we mark out
the various locations within the world, the position
of any objects to be found, and signify those
locations that are considered ‘special’. Most
locations on the map will simply allow the player
to move in and out of them, and pick up or drop
any objects that are there. Special locations may be
perilous (a swamp or a place where a dragon
lurks), or they may require a series of special
actions to be performed before you can enter into,
or exit from, them.

The best way to begin making a map is to
consider roughly how many locations are needed
for the game. Haunted Forest has 10 locations and
was designed on a five by five grid (as shown in the
illustration), whereas Digitaya has nearly 60
locations and was originally designed using a 10 by
10 grid.

The grid squares are initially unnumbered and
the designer starts by filling in locations on the
map. On the Haunted Forest map there is a path,
two tunnels, a swamp, a clearing and a village. The
positions of several objects are also marked at the
bottom of the squares where they are located.
Those locations marked with an asterisk (*) are
‘special’ and will be treated in a different way to the
rest of the locations.

Once the layout has been finalised we can

ADVENTURE GAME/PROGRAMMING PROJECTS == g

number each location. The only special
consideration we have taken into account in
choosing the location number is that all the special
locations have been numbered first. The order in
which the others are numbered is not important,
but once numbers have been selected it is
important that they are not changed later.

PROGRAMMING THE MAP DATA

The first programming task is to convert the
information in the map into data for the program.
There are many ways of doing this, but what we
will do here is use two one-dimensional arrays to
hold the map data. The first array, LNS(), holds
descriptions of each location. For example, for
location 7, LNS(7) will contain ‘on a path'. When the
data is used later in the program to describe a
location it will be prefixed by the words ‘You are’.

The second array, EXS$(), holds data about the
possible moves that can be made out of a location.

Both of our games limit themselves to four

directions: North, East, South and West. EXS()
provides information about the location number
to be moved to for each of the four directions. The
data is held as a string made up of eight digits. The
location number for each direction is entered in
the order NESW, using a two-digit number for
each direction.

For example, location 7 has exits to the North,
South and West, but none to the East. The first two
digits of EXS(7) are 08 (not just 8), which shows that
location 8 is to the North. The second pair of
digits, 00, indicates that there is no exit in this
direction (East). The digit pairs 03 and 06
represent the locations found to the South and
West of location 7. Using this system, up to 39
locations could be specified; if more than this were
required then the data for EXS() would have to be
entered as groups of three digits.

The three objects in the Haunted Forest are read
into another array — IV$(, ). This two-dimensional
array keeps track of the position of each object as it
is moved around the forest. Each object has a
description and its starting location on the map.
For example, IVS(C,1) may be GUN, and its position
at the start of the game is given by IVS(C,2), As the
objects are carried around during the game the
position members of the array will be updated
accordingly.

At the end of the map data in both of our listings
there is another item of data. This is a ‘checksum’
and is given to ensure that the direction data has
been typed in correctly. This is done by calculating
a running total of the data values, which is
compared against the checksum. If these are not
the same then a mistake has been made and the
program will stop running. You will notice that in
Digitaya two checksums are used. This is because
the total sum of all the direction data is too large to
be held easily in one checksum, so a total for the
left-hand and right-hand four digits is calculated
separately. In the next instalment of the project, we
will design routines to handle and display the map
data assembled here.

THE HOME COMPUTER ADVANCED COURSE 767



